Systematic targeted integration to study Albumin gene control elements

Sanchari Bhattacharyya, Jianmin Tian, Eric E. Bouhassira, Joseph Locker

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

To study transcriptional regulation by distant enhancers, we devised a system of easilymodified reporter plasmids for integration into single-copy targeting cassettes in clones of HuH7, a human hepatocellular carcinoma. The plasmid constructs tested transcriptional function of a 35-kb region that contained the rat albumin gene and its upstream flanking region. Expression of integrants was analyzed in two orientations, and compared to transient expression of non-integrated plasmids. Enhancers were studied in their natural positions relative to the promoter and localizedby deletion. All constructs were also analyzed by transient transfection assays. In addition to the known albumin gene enhancer (E1 at -10 kb), we demonstrated two new enhancers, E2 at -13, and E4 at +1.2 kb. All three enhancers functioned in both transient assays and integrated constructs. However, chromosomal integration demonstrated several differences from transient expression. For example, analysis of E2 showed that enhancer function within the chromosome required a larger gene region than in transient assays. Another conserved region, E3 at -0.7 kb, functioned as an enhancer in transient assays but inhibited the function of E1 and E2 when chromosomally integrated. The enhancers did not show additive or synergistic behavior,an effect consistent with competition for the promoter or inhibitory interactions among enhancers. Growth arrest by serum starvation strongly stimulated the function of some integrated enhancers, consistent with the expected disruption of enhancer-promoter looping during the cell cycle.

Original languageEnglish (US)
Article numbere23234
JournalPloS one
Volume6
Issue number8
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Systematic targeted integration to study Albumin gene control elements'. Together they form a unique fingerprint.

Cite this