Structural and functional analysis of a truncated form of Saccharomyces cerevisiae ATP sulfurylase: C-terminal domain essential for oligomer formation but not for activity

D. J. Lalor, T. Schnyder, V. Saridakis, D. E. Pilloff, A. Dong, H. Tang, T. S. Leyh, E. F. Pai

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

ATP sulfurylase catalyzes the first step in the activation of sulfate by transferring the adenylyl-moiety (AMP-) of ATP to sulfate to form adenosine 5′-phosphosulfate (APS) and pyrophosphate (PPi). Subsequently, APS kinase mediates transfer of the γ-phosphoryl group of ATP to APS to form 3′-phosphoadenosine 5′-phosphosulfate (PAPS) and ADP. The recently determined crystal structure of yeast ATP sulfurylase suggests that its C-terminal domain is structurally quite independent from the other domains, and not essential for catalytic activity. It seems, however, to dictate the oligomerization state of the protein. Here we show that truncation of this domain results in a monomeric enzyme with slightly enhanced catalytic efficiency. Structural alignment of the C-terminal domain indicated that it is extremely similar in its fold to APS kinase although not catalytically competent. While carrying out these structural and functional studies a surface groove was noted. Careful inspection and modeling revealed that the groove is sufficiently deep and wide, as well as properly positioned, to act as a substrate channel between the ATP sulfurylase and APS kinase-like domains of the enzyme.

Original languageEnglish (US)
Pages (from-to)1071-1079
Number of pages9
JournalProtein Engineering
Volume16
Issue number12
DOIs
StatePublished - Dec 2003

Keywords

  • APS kinase
  • ATP sulfurylase
  • Channeling
  • Domain evolution
  • Yeast

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Structural and functional analysis of a truncated form of Saccharomyces cerevisiae ATP sulfurylase: C-terminal domain essential for oligomer formation but not for activity'. Together they form a unique fingerprint.

Cite this