Semliki forest virus budding: Assay, mechanisms, and cholesterol requirement

Y. E. Lu, M. Kielian

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


All enveloped viruses must bud through a cellular membrane in order to acquire their lipid bilayer, but little is known about this important stage in virus biogenesis. We have developed a quantitative biochemical assay to monitor the budding of Semliki Forest virus (SFV), an enveloped alphavirus that buds from the plasma membrane in a reaction requiring both viral spike proteins and nucleocapsid. The assay was based on cell surface biotinylation of newly synthesized virus spike proteins and retrieval of biotinylated virions using streptavidin-conjugated magnetic particles. Budding of biotin-tagged SFV was continuous for at least 2 h, independent of microfilaments and microtubules, strongly temperature dependent, and relatively independent of continued exocytic transport. Studies of cell surface spike proteins at early times of infection showed that these spikes did not efficiently bud into virus particles and were rapidly degraded. In contrast, at later times of infection, spike protein degradation was markedly reduced and efficient budding was then observed. The previously described cholesterol requirement in SFV exit was shown to be due to a block in budding in the absence of cholesterol and correlated with the continued degradation of spike proteins at all times of virus infection in sterol-deficient cells.

Original languageEnglish (US)
Pages (from-to)7708-7719
Number of pages12
JournalJournal of virology
Issue number17
StatePublished - 2000

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology


Dive into the research topics of 'Semliki forest virus budding: Assay, mechanisms, and cholesterol requirement'. Together they form a unique fingerprint.

Cite this