TY - JOUR
T1 - Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an α-glucan pathway
AU - Kalscheuer, Rainer
AU - Syson, Karl
AU - Veeraraghavan, Usha
AU - Weinrick, Brian
AU - Biermann, Karolin E.
AU - Liu, Zhen
AU - Sacchettini, James C.
AU - Besra, Gurdyal
AU - Bornemann, Stephen
AU - Jacobs, William R.
N1 - Funding Information:
We thank G. Hatfull for promoting a collaboration between the Bornemann and Jacobs labs. This work was supported by US National Institutes of Health grants AI26170 (to W.R.J.) and AIO-68135 (Structural Biology of TB Drug Targets), the Albert Einstein College of Medicine Center for AIDS Research grant AIO-51519 and the UK Biotechnology and Biological Sciences Research Council through an Institute Strategic Programme Grant to the John Innes Centre. We thank C. Bruton and K. Chater for access to unpublished data and insightful discussions, D. Hopwood for advice on the manuscript and S. Fairhurst and L. Hill for recording NMR and mass spectra at the John Innes Centre. G.B. acknowledges support in the form of a Personal Research Chair from J. Bardrick (Royal Society Wolfson Research Merit Award, as a former Lister Institute Jenner Research Fellow). G.B. also acknowledges support from The Medical Research Council and the Wellcome Trust (081569/2/06/2). We thank P. Illarionov for discussion of NMR results and the staff in technical services of the University of Birmingham (especially N. Spencer, G. Burns and P. Ashton) for help in the NMR, GC and ES-MS experiments. This paper is dedicated to the late Chris Lamb.
PY - 2010/5
Y1 - 2010/5
N2 - New chemotherapeutics are urgently required to control the tuberculosis pandemic. We describe a new pathway from trehalose to α-glucan in Mycobacterium tuberculosis comprising four enzymatic steps mediated by TreS, Pep2, GlgE (which has been identified as a maltosyltransferase that uses maltose 1-phosphate) and GlgB. Using traditional and chemical reverse genetics, we show that GlgE inactivation causes rapid death of M. tuberculosis in vitro and in mice through a self-poisoning accumulation of maltose 1-phosphate. Poisoning elicits pleiotropic phosphosugar-induced stress responses promoted by a self-amplifying feedback loop where trehalose-forming enzymes are upregulated. Moreover, the pathway from trehalose to α-glucan exhibited a synthetic lethal interaction with the glucosyltransferase Rv3032, which is involved in biosynthesis of polymethylated α-glucans, because key enzymes in each pathway could not be simultaneously inactivated. The unique combination of maltose 1-phosphate toxicity and gene essentiality within a synthetic lethal pathway validates GlgE as a distinct potential drug target that exploits new synergistic mechanisms to induce death in M. tuberculosis.
AB - New chemotherapeutics are urgently required to control the tuberculosis pandemic. We describe a new pathway from trehalose to α-glucan in Mycobacterium tuberculosis comprising four enzymatic steps mediated by TreS, Pep2, GlgE (which has been identified as a maltosyltransferase that uses maltose 1-phosphate) and GlgB. Using traditional and chemical reverse genetics, we show that GlgE inactivation causes rapid death of M. tuberculosis in vitro and in mice through a self-poisoning accumulation of maltose 1-phosphate. Poisoning elicits pleiotropic phosphosugar-induced stress responses promoted by a self-amplifying feedback loop where trehalose-forming enzymes are upregulated. Moreover, the pathway from trehalose to α-glucan exhibited a synthetic lethal interaction with the glucosyltransferase Rv3032, which is involved in biosynthesis of polymethylated α-glucans, because key enzymes in each pathway could not be simultaneously inactivated. The unique combination of maltose 1-phosphate toxicity and gene essentiality within a synthetic lethal pathway validates GlgE as a distinct potential drug target that exploits new synergistic mechanisms to induce death in M. tuberculosis.
UR - http://www.scopus.com/inward/record.url?scp=77951296166&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951296166&partnerID=8YFLogxK
U2 - 10.1038/nchembio.340
DO - 10.1038/nchembio.340
M3 - Article
C2 - 20305657
AN - SCOPUS:77951296166
SN - 1552-4450
VL - 6
SP - 376
EP - 384
JO - Nature Chemical Biology
JF - Nature Chemical Biology
IS - 5
ER -