TY - JOUR
T1 - Roles of salt and conformation in the biological and physicochemical behavior of protegrin-1 and designed analogues
T2 - Correlation of antimicrobial, hemolytic, and lipid bilayer-perturbing activities
AU - Lai, Jonathan R.
AU - Epand, Raquel F.
AU - Weisblum, Bernard
AU - Epand, Richard M.
AU - Gellman, Samuel H.
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2006/12/26
Y1 - 2006/12/26
N2 - Protegrins are short (16-18 residues) cationic peptides from porcine leukocytes that display potent, broad-spectrum antimicrobial activity. Protegrin-1 (PG-1), one of five natural homologues, adopts a rigid β-hairpin structure that is stabilized by two disulfide bonds. We have previously employed the principles of β-hairpin design to develop PG-1 variants that lack disulfide bonds but nevertheless display potent antimicrobial activity [Lai, J. R., Huck, B. R., Weisblum, B., and Gellman, S. H. (2002) Biochemistry 41, 12835-12842.]. The activity of these disulfide-free variants, however, is attenuated in the presence of salt, and the activity of PG-1 itself is not. Salt-induced inactivation of host-defense peptides, such as human defensins, is thought to be important in some pathological situations (e.g., cystic fibrosis), and the variation in salt-sensitivity among our PG-1 analogues offers a model system with which to explore the origins of these salt effects. We find that the variations in antimicrobial activity among our peptides are correlated with the folding propensities of these molecules and with the extent to which the peptides induce leakage of contents from synthetic liposomes. Comparable correlations were observed between folding and hemolytic activity. The extent to which added salt reduces antimicrobial activity parallels salt effects on vesicle perturbation, which suggests that the biological effects of high salt concentrations arise from modulation of peptide-membrane interactions.
AB - Protegrins are short (16-18 residues) cationic peptides from porcine leukocytes that display potent, broad-spectrum antimicrobial activity. Protegrin-1 (PG-1), one of five natural homologues, adopts a rigid β-hairpin structure that is stabilized by two disulfide bonds. We have previously employed the principles of β-hairpin design to develop PG-1 variants that lack disulfide bonds but nevertheless display potent antimicrobial activity [Lai, J. R., Huck, B. R., Weisblum, B., and Gellman, S. H. (2002) Biochemistry 41, 12835-12842.]. The activity of these disulfide-free variants, however, is attenuated in the presence of salt, and the activity of PG-1 itself is not. Salt-induced inactivation of host-defense peptides, such as human defensins, is thought to be important in some pathological situations (e.g., cystic fibrosis), and the variation in salt-sensitivity among our PG-1 analogues offers a model system with which to explore the origins of these salt effects. We find that the variations in antimicrobial activity among our peptides are correlated with the folding propensities of these molecules and with the extent to which the peptides induce leakage of contents from synthetic liposomes. Comparable correlations were observed between folding and hemolytic activity. The extent to which added salt reduces antimicrobial activity parallels salt effects on vesicle perturbation, which suggests that the biological effects of high salt concentrations arise from modulation of peptide-membrane interactions.
UR - http://www.scopus.com/inward/record.url?scp=33845945985&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845945985&partnerID=8YFLogxK
U2 - 10.1021/bi0617759
DO - 10.1021/bi0617759
M3 - Article
C2 - 17176094
AN - SCOPUS:33845945985
SN - 0006-2960
VL - 45
SP - 15718
EP - 15730
JO - Biochemistry
JF - Biochemistry
IS - 51
ER -