Abstract
Rhodamine dyes exist in equilibrium between a fluorescent zwitterion and a nonfluorescent lactone. Tuning this equilibrium toward the nonfluorescent lactone form can improve cell-permeability and allow creation of "fluorogenic" compounds - ligands that shift to the fluorescent zwitterion upon binding a biomolecular target. An archetype fluorogenic dye is the far-red tetramethyl-Si-rhodamine (SiR), which has been used to create exceptionally useful labels for advanced microscopy. Here, we develop a quantitative framework for the development of new fluorogenic dyes, determining that the lactone-zwitterion equilibrium constant (KL-Z) is sufficient to predict fluorogenicity. This rubric emerged from our analysis of known fluorophores and yielded new fluorescent and fluorogenic labels with improved performance in cellular imaging experiments. We then designed a novel fluorophore - Janelia Fluor 526 (JF526) - with SiR-like properties but shorter fluorescence excitation and emission wavelengths. JF526 is a versatile scaffold for fluorogenic probes including ligands for self-labeling tags, stains for endogenous structures, and spontaneously blinking labels for super-resolution immunofluorescence. JF526 constitutes a new label for advanced microscopy experiments, and our quantitative framework will enable the rational design of other fluorogenic probes for bioimaging.
Original language | English (US) |
---|---|
Pages (from-to) | 1602-1613 |
Number of pages | 12 |
Journal | ACS Central Science |
Volume | 5 |
Issue number | 9 |
DOIs | |
State | Published - Sep 25 2019 |
ASJC Scopus subject areas
- Chemistry(all)
- Chemical Engineering(all)