TY - JOUR
T1 - Phosphorylation on Threonine-18 of the Regulatory Light Chain Dissociates the ATPase and Motor Properties of Smooth Muscle Myosin II
AU - Bresnick, Anne R.
AU - Wolff-Long, Vicki L.
AU - Baumann, Otto
AU - Pollard, Thomas D.
PY - 1995/10
Y1 - 1995/10
N2 - We cloned the full-length cDNA for the cytoplasmic myosin II regulatory light chain (RLC) from a stage 1-2 Xenopus oocyte library. The Xenopus RLC is 94% identical to the chicken smooth muscle myosin RLC. All of the protein kinase C and myosin light chain kinase phosphorylation sites are conserved. Using trifluoperazine [Trybus, K. M., Waller, G. S., & Chatman, T. A. (1994) J. Cell Biol. 124, 963-969], we removed the RLC of smooth muscle myosin and replaced it with recombinant Xenopus RLCs. The wild-type Xenopus RLC substitutes for the gizzard RLC in actin-activated ATPase and in vitro motility assays. We made alanine substitutions of the two residues phosphorylated by myosin light chain kinase, Ser-19 and Thr-18. All of the myosin hybrids, regardless of their mutations or phosphorylation, have similar K+EDTA ATPase activities. As expected, the T18A, S19A hybrid had no actin-activated ATPase, whereas the T18A hybrid phosphorylated on Ser-19 had an actin-activated ATPase similar to that of wild-type hybrids phosphorylated only on Ser-19. The actin-activated ATPase of myosin phosphorylated only on Thr-18 is approximately 15-fold lower than that of myosin phosphorylated on Ser-19. Phosphorylation of either Ser-19 or Thr-18 permits the formation of filaments. Remarkably, in the gliding filament assay, myosin phosphorylated only on Thr-18 moves actin filaments at velocities similar to myosin phosphorylated on Ser-19 or both Thr-18 and Ser-19.
AB - We cloned the full-length cDNA for the cytoplasmic myosin II regulatory light chain (RLC) from a stage 1-2 Xenopus oocyte library. The Xenopus RLC is 94% identical to the chicken smooth muscle myosin RLC. All of the protein kinase C and myosin light chain kinase phosphorylation sites are conserved. Using trifluoperazine [Trybus, K. M., Waller, G. S., & Chatman, T. A. (1994) J. Cell Biol. 124, 963-969], we removed the RLC of smooth muscle myosin and replaced it with recombinant Xenopus RLCs. The wild-type Xenopus RLC substitutes for the gizzard RLC in actin-activated ATPase and in vitro motility assays. We made alanine substitutions of the two residues phosphorylated by myosin light chain kinase, Ser-19 and Thr-18. All of the myosin hybrids, regardless of their mutations or phosphorylation, have similar K+EDTA ATPase activities. As expected, the T18A, S19A hybrid had no actin-activated ATPase, whereas the T18A hybrid phosphorylated on Ser-19 had an actin-activated ATPase similar to that of wild-type hybrids phosphorylated only on Ser-19. The actin-activated ATPase of myosin phosphorylated only on Thr-18 is approximately 15-fold lower than that of myosin phosphorylated on Ser-19. Phosphorylation of either Ser-19 or Thr-18 permits the formation of filaments. Remarkably, in the gliding filament assay, myosin phosphorylated only on Thr-18 moves actin filaments at velocities similar to myosin phosphorylated on Ser-19 or both Thr-18 and Ser-19.
UR - http://www.scopus.com/inward/record.url?scp=0028822081&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028822081&partnerID=8YFLogxK
U2 - 10.1021/bi00039a012
DO - 10.1021/bi00039a012
M3 - Article
C2 - 7548006
AN - SCOPUS:0028822081
SN - 0006-2960
VL - 34
SP - 12576
EP - 12583
JO - Biochemistry
JF - Biochemistry
IS - 39
ER -