TY - JOUR
T1 - Oxidative decarboxylation of pyruvate by 1-deoxy-D-xyulose 5-phosphate synthase, a central metabolic enzyme in bacteria
AU - DeColli, Alicia A.
AU - Nemeria, Natalia S.
AU - Majumdar, Ananya
AU - Gerfen, Gary J.
AU - Jordan, Frank
AU - Freel Meyers, Caren L.
N1 - Funding Information:
This work was supported by National Institutes of Health Grant R01 GM084998 (to C. L. F. M). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the respon-sibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© 2018 DeColli et al.
PY - 2018/7/13
Y1 - 2018/7/13
N2 - The underexploited antibacterial target 1-deoxy-D-xyluose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and D-glyc-eraldehyde 3-phosphate (D-GAP). DXP is an essential intermediate in the biosynthesis of ThDP, pyridoxal phosphate, and isoprenoids in many pathogenic bacteria. DXP synthase catalyzes a distinct mechanism in ThDP decarboxylative enzymology in which the first enzyme-bound pre-decarboxylation intermediate, C2α-lactyl-ThDP (LThDP), is stabilized by DXP synthase in the absence of D-GAP, and D-GAP then induces efficient LThDP decarboxylation. Despite the observed LThDP accumulation and lack of evidence for C2α-carbanion formation in the absence of D-GAP, CO2 is released at appreciable levels under these conditions. Here, seeking to resolve these conflicting observations, we show that DXP synthase catalyzes the oxidative decarboxylation of pyruvate under conditions in which LThDP accumulates. O2-dependent LThDP decarboxylation led to one-electron transfer from the C2α-carbanion/enamine to O2, with intermediate ThDP-enamine radical formation, followed by peracetic acid formation en route to acetate. Thus, LThDP formation and decarboxylation and DXP formation were studied under anaerobic conditions. Our results support a model in which O2-dependent LThDP decarboxylation and peracetic acid formation occur in the absence of D-GAP, decreasing the levels of pyruvate and O2 in solution. The relative pyruvate and O2 concentrations then dictate the extent of LThDP accumulation, and its buildup can be observed when [pyruvate] > [O2]. The finding that O2 acts as a structurally distinct trigger of LThDP decarboxylation supports the hypothesis that a mechanism involving small molecule– dependent LThDP decarboxylation equips DXP synthase for diverse, yet uncharacterized cellular functions.
AB - The underexploited antibacterial target 1-deoxy-D-xyluose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and D-glyc-eraldehyde 3-phosphate (D-GAP). DXP is an essential intermediate in the biosynthesis of ThDP, pyridoxal phosphate, and isoprenoids in many pathogenic bacteria. DXP synthase catalyzes a distinct mechanism in ThDP decarboxylative enzymology in which the first enzyme-bound pre-decarboxylation intermediate, C2α-lactyl-ThDP (LThDP), is stabilized by DXP synthase in the absence of D-GAP, and D-GAP then induces efficient LThDP decarboxylation. Despite the observed LThDP accumulation and lack of evidence for C2α-carbanion formation in the absence of D-GAP, CO2 is released at appreciable levels under these conditions. Here, seeking to resolve these conflicting observations, we show that DXP synthase catalyzes the oxidative decarboxylation of pyruvate under conditions in which LThDP accumulates. O2-dependent LThDP decarboxylation led to one-electron transfer from the C2α-carbanion/enamine to O2, with intermediate ThDP-enamine radical formation, followed by peracetic acid formation en route to acetate. Thus, LThDP formation and decarboxylation and DXP formation were studied under anaerobic conditions. Our results support a model in which O2-dependent LThDP decarboxylation and peracetic acid formation occur in the absence of D-GAP, decreasing the levels of pyruvate and O2 in solution. The relative pyruvate and O2 concentrations then dictate the extent of LThDP accumulation, and its buildup can be observed when [pyruvate] > [O2]. The finding that O2 acts as a structurally distinct trigger of LThDP decarboxylation supports the hypothesis that a mechanism involving small molecule– dependent LThDP decarboxylation equips DXP synthase for diverse, yet uncharacterized cellular functions.
UR - http://www.scopus.com/inward/record.url?scp=85051074281&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051074281&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA118.001980
DO - 10.1074/jbc.RA118.001980
M3 - Article
C2 - 29784878
AN - SCOPUS:85051074281
SN - 0021-9258
VL - 293
SP - 10857
EP - 10869
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 28
ER -