Abstract
HIV-1 reverse transcription (RT) occurs before or during uncoating, but the cellular compartment where RT and uncoating occurs is unknown. Using imaging and biochemical assays to track HIV-1 capsids in the nucleus during infection, we demonstrated that higher-order capsid complexes and/or complete cores containing the viral genome are imported into the nucleus. Inhibition of RT does not prevent capsid nuclear import; thus, RT may occur in nuclear compartments. Cytosolic and nuclear fractions of infected cells reveal that most RT intermediates are enriched in nuclear fractions, suggesting that HIV-1 RT occurs in the nucleus alongside uncoating. In agreement, we find that capsid in the nucleus induces recruitment of cleavage and polyadenylation specific factor 6 (CPSF6) to SC35 nuclear speckles, which are highly active transcription sites, suggesting that CPSF6 through capsid is recruiting viral complexes to SC35 speckles for the occurrence of RT. Thus, nuclear import precedes RT and uncoating, which fundamentally changes our understanding of HIV-1 infection. Selyutina et al. show that HIV-1 cores containing the viral genome are imported into the nucleus for reverse transcription and uncoating. HIV-1 cores in the nucleus are recruited by CPSF6 to SC35 highly active transcription domains for viral reverse transcription, integration, and/or expression.
Original language | English (US) |
---|---|
Article number | 108201 |
Journal | Cell Reports |
Volume | 32 |
Issue number | 13 |
DOIs | |
State | Published - Sep 29 2020 |
Keywords
- CPSF6
- HIV-1
- SAMHD1
- SC35
- capsid
- core
- nuclear import
- nuclear speckles
- reverse transcription
- uncoating
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology