Abstract
NKT cells have pivotal roles in immune regulation and tumor immunosurveillance. We report that the G-CSF and FMS-like tyrosine kinase 3 ligand (Flt-SL) chimeric cytokine, progenipoietin-1, markedly expands the splenic and hepatic NKT cell population and enhances functional responses to α-galactosylcerainide. In a murine model of allogeneic stem cell transplantation, donor NKT cells promoted host DC activation and enhanced perforin-restricted CD8+ T cell cytotoxicity against host-type antigens. Following leukemic challenge, donor treatment with progenipoietin-1 significantly improved overall survival when compared with G-CSF or control, attributable to reduced graft-versus-host disease mortality and paradoxical augmentation of graft-versus-leukemia (GVL) effects. Enhanced cellular cytotoxicity was dependent on donor NKT cells, and leukemia clearance was profoundly impaired in recipients of NKT cell-deficient grafts. Enhanced cytotoxicity and GVL effects were not associated with Flt-3L signaling or effects on DCs but were reproduced by prolonged G-CSF receptor engagement with pegylated G-CSF. Thus, modified G-CSF signaling during stem cell mobilization augments NKT cell-dependent CD8+ cytotoxicity, effectively separating graft-versus-host disease and GVL and greatly expanding the potential applicability of allogeneic stem cell transplantation for the therapy of malignant disease.
Original language | English (US) |
---|---|
Pages (from-to) | 3093-3103 |
Number of pages | 11 |
Journal | Journal of Clinical Investigation |
Volume | 115 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2005 |
ASJC Scopus subject areas
- General Medicine