TY - JOUR
T1 - Nickel-Induced Developmental Neurotoxicity in C. elegans Includes Cholinergic, Dopaminergic and GABAergic Degeneration, Altered Behaviour, and Increased SKN-1 Activity
AU - Ijomone, Omamuyovwi M.
AU - Miah, Mahfuzur R.
AU - Akingbade, Grace T.
AU - Bucinca, Hana
AU - Aschner, Michael
N1 - Funding Information:
The authors acknowledge the Analytical Imaging Facility, Albert Einstein College of Medicine, USA (NCI: P30CA013330).
Funding Information:
OMI acknowledges the support of International Brain Research Organization (IBRO)-International Society for Neurochemistry (ISN) Research Fellowship 2017. MA was supported by National Institute of Health (NIH) R01 ES10563, R01 ES07331 and R01 ES020852.
Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Nickel (Ni) is a ubiquitous metal in the environment with increasing industrial application. While environmental and occupational exposure to Ni compounds has been known to result in toxicities to several organs, including the liver, kidney, lungs, skin and gonads, neurotoxic effects have not been extensively investigated. In this present study, we investigated specific neuronal susceptibility in a C. elegans model of acute Ni neurotoxicity. Wild-type worms and worms expressing green fluorescent protein (GFP) in either cholinergic, dopaminergic or GABAergic neurons were treated with NiCl2 for 1 h at the first larval (L1) stage. The median lethal dose (LD50) was calculated to be 5.88 mM in this paradigm. Morphology studies of GFP-expressing worms showed significantly increasing degeneration of cholinergic, dopaminergic and GABAergic neurons with increasing Ni concentration. Significant functional changes in locomotion and basal slowing response assays reflected that cholinergic and dopaminergic neuronal function, respectively, were impaired due to Ni treatment. Interestingly, a small but significant number of worms exhibited shrinker phenotype upon Ni exposure but no loopy head foraging behaviour was observed suggesting that function of D-type GABAergic neurons of C elegans may be specifically attenuated while the RME subset of GABAergic neurons are not. GFP expression due to induction of glutathione S-transferase 4 (gst-4), a target of Nrf2 homolog skn-1, was increased in a Pgst-4::GFP worm highlighting Ni-induced oxidative stress. RT-qPCR verified upregulation of this expression of gst-4 immediately after exposure. These data suggest that oxidative stress is associated with neuronal damage and altered behaviour due to developmental Ni exposure.
AB - Nickel (Ni) is a ubiquitous metal in the environment with increasing industrial application. While environmental and occupational exposure to Ni compounds has been known to result in toxicities to several organs, including the liver, kidney, lungs, skin and gonads, neurotoxic effects have not been extensively investigated. In this present study, we investigated specific neuronal susceptibility in a C. elegans model of acute Ni neurotoxicity. Wild-type worms and worms expressing green fluorescent protein (GFP) in either cholinergic, dopaminergic or GABAergic neurons were treated with NiCl2 for 1 h at the first larval (L1) stage. The median lethal dose (LD50) was calculated to be 5.88 mM in this paradigm. Morphology studies of GFP-expressing worms showed significantly increasing degeneration of cholinergic, dopaminergic and GABAergic neurons with increasing Ni concentration. Significant functional changes in locomotion and basal slowing response assays reflected that cholinergic and dopaminergic neuronal function, respectively, were impaired due to Ni treatment. Interestingly, a small but significant number of worms exhibited shrinker phenotype upon Ni exposure but no loopy head foraging behaviour was observed suggesting that function of D-type GABAergic neurons of C elegans may be specifically attenuated while the RME subset of GABAergic neurons are not. GFP expression due to induction of glutathione S-transferase 4 (gst-4), a target of Nrf2 homolog skn-1, was increased in a Pgst-4::GFP worm highlighting Ni-induced oxidative stress. RT-qPCR verified upregulation of this expression of gst-4 immediately after exposure. These data suggest that oxidative stress is associated with neuronal damage and altered behaviour due to developmental Ni exposure.
KW - Behaviour
KW - C. elegans
KW - Neurodegeneration
KW - Nickel
KW - Oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=85079434913&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85079434913&partnerID=8YFLogxK
U2 - 10.1007/s12640-020-00175-3
DO - 10.1007/s12640-020-00175-3
M3 - Article
C2 - 32034695
AN - SCOPUS:85079434913
SN - 1029-8428
VL - 37
SP - 1018
EP - 1028
JO - Neurotoxicity Research
JF - Neurotoxicity Research
IS - 4
ER -