Molecular and cytological analysis of widely-used Gal4 driver lines for Drosophila neurobiology

Anna A. Ogienko, Evgeniya N. Andreyeva, Evgeniya S. Omelina, Anastasiya L. Oshchepkova, Alexey V. Pindyurin

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Background: The Drosophila central nervous system (CNS) is a convenient model system for the study of the molecular mechanisms of conserved neurobiological processes. The manipulation of gene activity in specific cell types and subtypes of the Drosophila CNS is frequently achieved by employing the binary Gal4/UAS system. However, many Gal4 driver lines available from the Bloomington Drosophila Stock Center (BDSC) and commonly used in Drosophila neurobiology are still not well characterized. Among these are three lines with Gal4 driven by the elav promoter (BDSC #8760, #8765, and #458), one line with Gal4 driven by the repo promoter (BDSC #7415), and the 69B-Gal4 line (BDSC #1774). For most of these lines, the exact insertion sites of the transgenes and the detailed expression patterns of Gal4 are not known. This study is aimed at filling these gaps. Results: We have mapped the genomic location of the Gal4-bearing P-elements carried by the BDSC lines #8760, #8765, #458, #7415, and #1774. In addition, for each of these lines, we have analyzed the Gal4-driven GFP expression pattern in the third instar larval CNS and eye-antennal imaginal discs. Localizations of the endogenous Elav and Repo proteins were used as markers of neuronal and glial cells, respectively. Conclusions: We provide a mini-atlas of the spatial activity of Gal4 drivers that are widely used for the expression of UAS–target genes in the Drosophila CNS. The data will be helpful for planning experiments with these drivers and for the correct interpretation of the results.

Original languageEnglish (US)
Article number96
JournalBMC genetics
StatePublished - Oct 1 2020
Externally publishedYes


  • 69B-Gal4
  • CNS
  • Driver
  • Drosophila
  • Gal4
  • Gal4/UAS
  • Glia
  • Neurons
  • elav
  • elav-Gal4

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)


Dive into the research topics of 'Molecular and cytological analysis of widely-used Gal4 driver lines for Drosophila neurobiology'. Together they form a unique fingerprint.

Cite this