Mechanisms of resistance to vascular endothelial growth factor blockade

Shaad E. Abdullah, Roman Perez-Soler

Research output: Contribution to journalReview articlepeer-review

73 Scopus citations


Angiogenesis is essential for the growth of primary tumors and for their metastasis. This process is induced by factors, such as vascular endothelial growth factors (VEGFs), that bind to transmembrane VEGF receptors (VEGFRs). VEGF-A is the primary factor involved with angiogenesis; it binds to both VEGFR-1 and VEGFR-2. The inhibition of angiogenesis by obstructing VEGF-A signaling has been investigated as a method to treat solid tumors, but the development of resistance to this blockade has complicated treatment. The major mechanisms of this resistance to VEGF-A blockade include signaling by redundant receptors, such as the fibroblast growth factors, angiopoietin-1, ephrins, and other forms of VEGF. Other major mechanisms of resistance are increased metastasis of hypoxia-resistant tumor cells, recruitment of cell types capable of promoting VEGF-independent angiogenesis, and increased circulation of nontumor proangiogenic factors. Additional mechanisms of resistance to VEGF-A blockade include heterogeneity of responsiveness among tumor cells, use of anti-VEGF-A agents at insufficient doses or for insufficient duration, altered sensitivity to anti-VEGF-A agents by mutations in endothelial cells or vascular remodeling, maintenance of vascular sleeves that allow for easy regrowth of tumor vasculature upon discontinuation of therapy, vascular cooption, and intussusceptive angiogenesis. An understanding of these mechanisms may lead to the development of targeted therapies that overcome this resistance. Some of these approaches include the combined inhibition of redundant angiogenic pathways, proper patient selection for various therapies based on gene expression profiles, blockade of cellular migration by inhibition of colony-stimulating factor, or the use of agents to disrupt vascular architecture.

Original languageEnglish (US)
Pages (from-to)3455-3467
Number of pages13
Issue number14
StatePublished - Jul 15 2012


  • cancer
  • resistance
  • signaling
  • vascular endothelial growth factor

ASJC Scopus subject areas

  • Oncology
  • Cancer Research


Dive into the research topics of 'Mechanisms of resistance to vascular endothelial growth factor blockade'. Together they form a unique fingerprint.

Cite this