TY - JOUR
T1 - Investigation of reversible histone acetylation and dynamics in gene expression regulation using 3D liver spheroid model
AU - Stransky, Stephanie
AU - Cutler, Ronald
AU - Aguilan, Jennifer
AU - Nieves, Edward
AU - Sidoli, Simone
N1 - Funding Information:
The Sidoli lab would like to acknowledge the team of CelVivo IVS (Odense, Denmark) for all the support with establishing the 3D spheroids culture, in particular, Dr. Krzysztof Wrzesinski, Dr. Peter Willems-Alnøe, and Dr. Stephen J. Fey. Ms. Georgia Fallon (now Dr. Jonathan Lai’s lab, Einstein) is acknowledged for the initial contribution with the introduction of the manuscript. The authors also thank the staff from the Stable Isotope and Metabolomics Core Facility of the Diabetes Research and Training Center (DRTC) of the Albert Einstein College of Medicine.
Funding Information:
The Sidoli lab gratefully acknowledges the Leukemia Research Foundation (Hollis Brownstein New Investigator Research Grant), AFAR (Sagol Network GerOmics award), Deerfield (Xseed award), Relay Therapeutics, Merck and the NIH Office of the Director (1S10OD030286-01). The authors also gratefully acknowledge the Japan Agency for Medical Research and Development (AMED), the Einstein Nathan Shock Center of Excellence, and the New York Academy of Sciences (NYAS) for supporting the lab in aging research. The Metabolomics core is supported by NIH/NCI grant P60DK020541.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Three-dimensional (3D) cell culture has emerged as an alternative approach to 2D flat culture to model more accurately the phenotype of solid tissue in laboratories. Culturing cells in 3D more precisely recapitulates physiological conditions of tissues, as these cells reduce activities related to proliferation, focusing their energy consumption toward metabolism and homeostasis. Results: Here, we demonstrate that 3D liver spheroids are a suitable system to model chromatin dynamics and response to epigenetics inhibitors. To delay necrotic tissue formation despite proliferation arrest, we utilize rotating bioreactors that apply active media diffusion and low shearing forces. We demonstrate that the proteome and the metabolome of our model resemble typical liver functions. We prove that spheroids respond to sodium butyrate (NaBut) treatment, an inhibitor of histone deacetylases (HDACi), by upregulating histone acetylation and transcriptional activation. As expected, NaBut treatment impaired specific cellular functions, including the energy metabolism. More importantly, we demonstrate that spheroids reestablish their original proteome and transcriptome, including pre-treatment levels of histone acetylation, metabolism, and protein expression once the standard culture condition is restored after treatment. Given the slow replication rate (> 40 days) of cells in 3D spheroids, our model enables to monitor the recovery of approximately the same cells that underwent treatment, demonstrating that NaBut does not have long-lasting effects on histone acetylation and gene expression. These results suggest that our model system can be used to quantify molecular memory on chromatin. Conclusion: Together, we established an innovative cell culture system that can be used to model anomalously decondensing chromatin in physiological cell growth and rule out epigenetics inheritance if cells recover the original phenotype after treatment. The transient epigenetics effects demonstrated here highlight the relevance of using a 3D culture model system that could be very useful in studies requiring long-term drug treatment conditions that would not be possible using a 2D cell monolayer system.
AB - Background: Three-dimensional (3D) cell culture has emerged as an alternative approach to 2D flat culture to model more accurately the phenotype of solid tissue in laboratories. Culturing cells in 3D more precisely recapitulates physiological conditions of tissues, as these cells reduce activities related to proliferation, focusing their energy consumption toward metabolism and homeostasis. Results: Here, we demonstrate that 3D liver spheroids are a suitable system to model chromatin dynamics and response to epigenetics inhibitors. To delay necrotic tissue formation despite proliferation arrest, we utilize rotating bioreactors that apply active media diffusion and low shearing forces. We demonstrate that the proteome and the metabolome of our model resemble typical liver functions. We prove that spheroids respond to sodium butyrate (NaBut) treatment, an inhibitor of histone deacetylases (HDACi), by upregulating histone acetylation and transcriptional activation. As expected, NaBut treatment impaired specific cellular functions, including the energy metabolism. More importantly, we demonstrate that spheroids reestablish their original proteome and transcriptome, including pre-treatment levels of histone acetylation, metabolism, and protein expression once the standard culture condition is restored after treatment. Given the slow replication rate (> 40 days) of cells in 3D spheroids, our model enables to monitor the recovery of approximately the same cells that underwent treatment, demonstrating that NaBut does not have long-lasting effects on histone acetylation and gene expression. These results suggest that our model system can be used to quantify molecular memory on chromatin. Conclusion: Together, we established an innovative cell culture system that can be used to model anomalously decondensing chromatin in physiological cell growth and rule out epigenetics inheritance if cells recover the original phenotype after treatment. The transient epigenetics effects demonstrated here highlight the relevance of using a 3D culture model system that could be very useful in studies requiring long-term drug treatment conditions that would not be possible using a 2D cell monolayer system.
KW - Epigenetics
KW - Histone proteins
KW - In vitro
KW - Liver
KW - Proteome
KW - Spheroids
KW - Transcriptome
UR - http://www.scopus.com/inward/record.url?scp=85142228240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85142228240&partnerID=8YFLogxK
U2 - 10.1186/s13072-022-00470-7
DO - 10.1186/s13072-022-00470-7
M3 - Article
C2 - 36411440
AN - SCOPUS:85142228240
SN - 1756-8935
VL - 15
JO - Epigenetics and Chromatin
JF - Epigenetics and Chromatin
IS - 1
M1 - 35
ER -