TY - JOUR
T1 - Insulin receptor substrate 1 rescues insulin action in CHO cells expressing mutant insulin receptors that lack a juxtamembrane NPXY motif
AU - Chen, Daxin
AU - Van Horn, Debra J.
AU - White, Morris F.
AU - Backer, Jonathan M.
PY - 1995/9
Y1 - 1995/9
N2 - Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the β-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21(ras). Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.
AB - Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the β-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21(ras). Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.
UR - http://www.scopus.com/inward/record.url?scp=0029157595&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029157595&partnerID=8YFLogxK
U2 - 10.1128/MCB.15.9.4711
DO - 10.1128/MCB.15.9.4711
M3 - Article
C2 - 7651388
AN - SCOPUS:0029157595
SN - 0270-7306
VL - 15
SP - 4711
EP - 4717
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 9
ER -