TY - JOUR
T1 - Identification of an extracellular gate for the proton-coupled folate transporter (PCFT-SLC46A1) by cysteine cross-linking
AU - Zhao, Rongbao
AU - Najmi, Mitra
AU - Fiser, Andras
AU - Goldman, I. David
N1 - Funding Information:
This work was supported by National Cancer Institute, National Institutes of Health Grant CA082621.
Publisher Copyright:
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2016/4/8
Y1 - 2016/4/8
N2 - The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon the Escherichia coli glycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln45-TMD1, Asn90-TMD2, Leu290-TMD7, Ser407-TMD11 and Asn411-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [3H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd2+ complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/ S407C pair and a CuPh- and Cd2+-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influx Vmax consistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11.
AB - The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon the Escherichia coli glycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln45-TMD1, Asn90-TMD2, Leu290-TMD7, Ser407-TMD11 and Asn411-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [3H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd2+ complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/ S407C pair and a CuPh- and Cd2+-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influx Vmax consistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11.
UR - http://www.scopus.com/inward/record.url?scp=84964626146&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964626146&partnerID=8YFLogxK
U2 - 10.1074/jbc.M115.693929
DO - 10.1074/jbc.M115.693929
M3 - Article
C2 - 26884338
AN - SCOPUS:84964626146
SN - 0021-9258
VL - 291
SP - 8162
EP - 8172
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 15
ER -