Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells.

K. Luby-Phelps, P. E. Castle, D. L. Taylor, F. Lanni

Research output: Contribution to journalArticlepeer-review

349 Scopus citations


Using fluorescence recovery after photobleaching, we have studied the diffusion of fluorescein-labeled, size-fractionated Ficoll in the cytoplasmic space of living Swiss 3T3 cells as a probe of the physical chemical properties of cytoplasm. The results reported here corroborate and extend the results of earlier experiments with fluorescein-labeled, size-fractionated dextran: diffusion of nonbinding particles in cytoplasm is hindered in a size-dependent manner. Extrapolation of the data suggests that particles larger than 260 A in radius may be completely nondiffusible in the cytoplasmic space. In contrast, diffusion of Ficoll in protein solutions of concentration comparable to the range reported for cytoplasm is not hindered in a size-dependent manner. Although we cannot at present distinguish among several physical chemical models for the organization of cytoplasm, these results make it clear that cytoplasm possesses some sort of higher-order intermolecular interactions (structure) not found in simple aqueous protein solutions, even at high concentration. These results also suggest that, for native cytoplasmic particles whose smallest radial dimension approaches 260 A, size may be as important a determinant of cytoplasmic diffusibility as binding specificity. This would include most endosomes, polyribosomes, and the larger multienzyme complexes.

Original languageEnglish (US)
Pages (from-to)4910-4913
Number of pages4
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number14
StatePublished - Jul 1987
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells.'. Together they form a unique fingerprint.

Cite this