TY - JOUR
T1 - Herpes simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in cultured monocytic cells
AU - Peri, Piritta
AU - Mattila, Riikka K.
AU - Kantola, Helena
AU - Broberg, Eeva
AU - Karttunen, Heidi S.
AU - Waris, Matti
AU - Vuorinen, Tytti
AU - Hukkanen, Veijo
N1 - Funding Information:
We thank Camilla Aspelin, Terhi Helander, Marja-Leena Mattila, Outi Rauta and Johanna Vänni for expertise in the laboratory and Tero Vahlberg for assistance with statistical analysis. This work has been supported by Finnish Cultural Foundation, the Finnish Society of Sciences and Letters, the Academy of Finland (54050, 211035 and 118366), Turku University Foundation, and Finnish Konkordia Fund.
PY - 2008
Y1 - 2008
N2 - Background. Toll-like receptors have a key role in innate immune response to microbial infection. The toll-like receptor (TLR) family consists of ten identified human TLRs, of which TLR2 and TLR9 have been shown to initiate innate responses to herpes simplex virus type 1 (HSV-1) and TLR3 has been shown to be involved in defence against severe HSV-1 infections of the central nervous system. However, no significant activation of the TLR3 pathways has been observed in wild type HSV-1 infections. In this work, we have studied the TLR responses and effects on TLR gene expression by HSV-1 with Us3 and ICP4 gene deletions, which also subject infected cells to apoptosis in human monocytic (U937) cell cultures. Results. U937 human monocytic cells were infected with the Us3 and ICP4 deletion herpes simplex virus (d120), its parental virus HSV-1 (KOS), the Us3 deletion virus (R7041), its rescue virus (R7306) or wild type HSV-1 (F). The mRNA expression of TLR2, TLR3, TLR4, TLR9 and type I interferons (IFN) were analyzed by quantitative real-time PCR. The intracellular expression of TLR3 and type I IFN inducible myxovirus resistance protein A (MxA) protein as well as the level of apoptosis were analyzed by flow cytometry. We observed that the mRNA expression of TLR3 and type I IFNs were significantly increased in d120, R7041 and HSV-1 (F)-infected U937 cells. Moreover, the intracellular expression of TLR3 and MxA were significantly increased in d120 and R7041-infected cells. We observed activation of IRF-3 in infections with d120 and R7041. The TLR4 mRNA expression level was significantly decreased in d120 and R7041-infected cells but increased in HSV-1 (KOS)-infected cells in comparison with uninfected cells. No significant difference in TLR2 or TLR9 mRNA expression levels was seen. Both the R7041 and d120 viruses were able to induce apoptosis in U937 cell cultures. Conclusion. The levels of TLR3 and type I IFN mRNA were increased in d120, R7041 and HSV-1 (F)-infected cells when compared with uninfected cells. Also IRF-3 was activated in cells infected with the Us3 gene deletion viruses d120 and R7041. This is consistent with activation of TLR3 signaling in the cells. The intracellular TLR3 and type I IFN inducible MxA protein levels were increased in d120 and R7041-infected cells but not in cells infected with the corresponding parental or rescue viruses, suggesting that the HSV-1 Us3 gene is involved in control of TLR3 responses in U937 cells.
AB - Background. Toll-like receptors have a key role in innate immune response to microbial infection. The toll-like receptor (TLR) family consists of ten identified human TLRs, of which TLR2 and TLR9 have been shown to initiate innate responses to herpes simplex virus type 1 (HSV-1) and TLR3 has been shown to be involved in defence against severe HSV-1 infections of the central nervous system. However, no significant activation of the TLR3 pathways has been observed in wild type HSV-1 infections. In this work, we have studied the TLR responses and effects on TLR gene expression by HSV-1 with Us3 and ICP4 gene deletions, which also subject infected cells to apoptosis in human monocytic (U937) cell cultures. Results. U937 human monocytic cells were infected with the Us3 and ICP4 deletion herpes simplex virus (d120), its parental virus HSV-1 (KOS), the Us3 deletion virus (R7041), its rescue virus (R7306) or wild type HSV-1 (F). The mRNA expression of TLR2, TLR3, TLR4, TLR9 and type I interferons (IFN) were analyzed by quantitative real-time PCR. The intracellular expression of TLR3 and type I IFN inducible myxovirus resistance protein A (MxA) protein as well as the level of apoptosis were analyzed by flow cytometry. We observed that the mRNA expression of TLR3 and type I IFNs were significantly increased in d120, R7041 and HSV-1 (F)-infected U937 cells. Moreover, the intracellular expression of TLR3 and MxA were significantly increased in d120 and R7041-infected cells. We observed activation of IRF-3 in infections with d120 and R7041. The TLR4 mRNA expression level was significantly decreased in d120 and R7041-infected cells but increased in HSV-1 (KOS)-infected cells in comparison with uninfected cells. No significant difference in TLR2 or TLR9 mRNA expression levels was seen. Both the R7041 and d120 viruses were able to induce apoptosis in U937 cell cultures. Conclusion. The levels of TLR3 and type I IFN mRNA were increased in d120, R7041 and HSV-1 (F)-infected cells when compared with uninfected cells. Also IRF-3 was activated in cells infected with the Us3 gene deletion viruses d120 and R7041. This is consistent with activation of TLR3 signaling in the cells. The intracellular TLR3 and type I IFN inducible MxA protein levels were increased in d120 and R7041-infected cells but not in cells infected with the corresponding parental or rescue viruses, suggesting that the HSV-1 Us3 gene is involved in control of TLR3 responses in U937 cells.
UR - http://www.scopus.com/inward/record.url?scp=58149086118&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58149086118&partnerID=8YFLogxK
U2 - 10.1186/1743-422X-5-140
DO - 10.1186/1743-422X-5-140
M3 - Article
C2 - 19025601
AN - SCOPUS:58149086118
SN - 1743-422X
VL - 5
JO - Virology Journal
JF - Virology Journal
M1 - 140
ER -