Abstract
Repetitive activation of glutamatergic fibers that normally induces long-term potentiation (LTP) at excitatory synapses in the hippocampus also triggers long-term depression at inhibitory synapses (I-LTD) via retrograde endocannabinoid signaling. Little is known, however, about the physiological significance of I-LTD. Here, we show that synaptic-driven release of endocannabinoids is a highly localized and efficient process that strongly depresses cannabinoid-sensitive inhibitory inputs within the dendritic compartment of CA1 pyramidal cells. By removing synaptic inhibition in a restricted area of the dendritic tree, endocannabinoids selectively "primed" nearby excitatory synapses, thereby facilitating subsequent induction of LTP. This induction of local metaplasticity is a novel mechanism by which endocannabinoids can contribute to the storage of information in the brain.
Original language | English (US) |
---|---|
Pages (from-to) | 871-881 |
Number of pages | 11 |
Journal | Neuron |
Volume | 43 |
Issue number | 6 |
DOIs | |
State | Published - Sep 16 2004 |
ASJC Scopus subject areas
- Neuroscience(all)