TY - JOUR
T1 - Double blockade of cell cycle at G1-S transition and M phase by 3-iodoacetamido benzoyl ethyl ester, a new type of tubulin ligand
AU - Jiang, Jian Dong
AU - Denner, Larry
AU - Ling, Yi He
AU - Li, Jian Nong
AU - Davis, Ashley
AU - Wang, Yue
AU - Li, Yan
AU - Roboz, Julia
AU - Wang, Long Gui
AU - Perez-Soler, Roman
AU - Marcelli, Marco
AU - Bekesi, George
AU - Holland, James F.
PY - 2002
Y1 - 2002
N2 - 3-Iodoacetamido benzoyl ethyl ester (3-IAABE) is a new compound synthesized in our laboratory. The primary action of 3-IAABE is to inhibit microtubule assembly by interacting with -SH groups on tubulin. In contrast to other known microtubule disrupters, 3-IAABE caused a double blockade in the cell cycle at G1-S transition and in M phase. The blockade was determined by cell cycle analysis and chromosome distribution. Kinase activities of cyclin E and cyclin-dependent kinase 2 responsible for the G1-S transition were increased, as were the activities of mitotic cyclin B and cdc2. 3-IAABE treatment also increased p53 expression and dephosphorylated (or activated) retinoblastoma protein. Investigation of the signal transduction pathway showed that 3-IAABE induced bcl-2 phosphorylation, followed by activation of caspase-9, -3, and -6, but not caspase-8. DNA fragmentation factor and poly(ADP-ribose) polymerase, the downstream substrates of caspase-3 and -6, were cleaved after 3 h of exposure to 3-IAABE, followed by DNA fragmentation. Pretreatment of the cells with inhibitors of caspase-9, -3, or -6, respectively, inhibited the cleavage of DNA fragmentation factor and poly(ADP-ribose) polymerase and thus inhibited the onset of apoptosis. 3-IAABE showed antitumor activities in the panel of 60 National Cancer Institute human tumor cell lines with total growth inhibition in the range of 0.22-4.3 μM for solid tumor lines and 0.025-0.22 μM for leukemia/lymphoma cell lines. The 3-IAABU total growth inhibition of phytohemagglutinin-stimulated healthy human lymphocytes was 450-fold greater than that of leukemic cells. 3-IAABE significantly inhibited the growth of human hepatocarcinoma (BEL-7402) in nude mice by 72% in tumor volume, more strongly than did vincristine (43% inhibition). Besides being a novel lead for the design of new anticancer tubulin ligands, the activity of 3-IAABE in the cell cycle may also help us to understand the molecular pharmacology of microtubule-active drugs.
AB - 3-Iodoacetamido benzoyl ethyl ester (3-IAABE) is a new compound synthesized in our laboratory. The primary action of 3-IAABE is to inhibit microtubule assembly by interacting with -SH groups on tubulin. In contrast to other known microtubule disrupters, 3-IAABE caused a double blockade in the cell cycle at G1-S transition and in M phase. The blockade was determined by cell cycle analysis and chromosome distribution. Kinase activities of cyclin E and cyclin-dependent kinase 2 responsible for the G1-S transition were increased, as were the activities of mitotic cyclin B and cdc2. 3-IAABE treatment also increased p53 expression and dephosphorylated (or activated) retinoblastoma protein. Investigation of the signal transduction pathway showed that 3-IAABE induced bcl-2 phosphorylation, followed by activation of caspase-9, -3, and -6, but not caspase-8. DNA fragmentation factor and poly(ADP-ribose) polymerase, the downstream substrates of caspase-3 and -6, were cleaved after 3 h of exposure to 3-IAABE, followed by DNA fragmentation. Pretreatment of the cells with inhibitors of caspase-9, -3, or -6, respectively, inhibited the cleavage of DNA fragmentation factor and poly(ADP-ribose) polymerase and thus inhibited the onset of apoptosis. 3-IAABE showed antitumor activities in the panel of 60 National Cancer Institute human tumor cell lines with total growth inhibition in the range of 0.22-4.3 μM for solid tumor lines and 0.025-0.22 μM for leukemia/lymphoma cell lines. The 3-IAABU total growth inhibition of phytohemagglutinin-stimulated healthy human lymphocytes was 450-fold greater than that of leukemic cells. 3-IAABE significantly inhibited the growth of human hepatocarcinoma (BEL-7402) in nude mice by 72% in tumor volume, more strongly than did vincristine (43% inhibition). Besides being a novel lead for the design of new anticancer tubulin ligands, the activity of 3-IAABE in the cell cycle may also help us to understand the molecular pharmacology of microtubule-active drugs.
UR - http://www.scopus.com/inward/record.url?scp=0036828201&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036828201&partnerID=8YFLogxK
M3 - Article
C2 - 12414632
AN - SCOPUS:0036828201
SN - 0008-5472
VL - 62
SP - 6080
EP - 6088
JO - Cancer research
JF - Cancer research
IS - 21
ER -