Direct regulation of Pitx3 expression by Nurr1 in culture and in developing mouse midbrain

Floriana Volpicelli, Roberto de Gregorio, Salvatore Pulcrano, Carla Perrone-Capano, Umberto Porzio, Gian Carlo Bellenchi

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


Due to their correlation with major human neurological diseases, dopaminergic neurons are some of the most studied neuronal subtypes. Mesencephalic dopaminergic (mDA) differentiation requires the activation of a cascade of transcription factors, among which play a crucial role the nuclear receptor Nurr1 and the paired-like homeodomain 3, Pitx3. During development the expression of Nurr1 precedes that of Pitx3 and those of typical dopaminergic markers such as tyrosine hydroxylase (TH) and dopamine Transporter (DAT) that are directly regulated by Nurr1. Interestingly we have previously demonstrated that Nurr1 RNA silencing reduced Pitx3 transcripts, leading to the hypothesis that Nurr1 may control Pitx3 expression. Here we show that Nurr1 overexpression up-regulates that of Pitx3 in a dose-dependent manner by binding to a non-canonical NBRE consensus sequence, located at the 5′ site of the gene. Interestingly, this sequence shows the same effect as the canonical one in promoting gene translation, and its deletion abolishes the ability of Nurr1 to sustain reporter gene expression. Moreover, we show that there is a direct interaction between Nurr1 and the Pitx3 gene promoter in dopaminergic cell cultures and midbrain embryonic tissue. Altogether, our results suggest that the regulation of Pitx3 by Nurr1 may be an essential event controlling the development and function of mDA neurons.

Original languageEnglish (US)
Article numbere30661
JournalPloS one
Issue number2
StatePublished - Feb 17 2012
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General


Dive into the research topics of 'Direct regulation of Pitx3 expression by Nurr1 in culture and in developing mouse midbrain'. Together they form a unique fingerprint.

Cite this