Combined exposure to manganese and iron decreases oxidative stress-induced nerve damage by increasing Nrf2/HO-1/NQO1 expression

Yuan yuan Fang, Meng jun Teng, Jian chao Peng, Xiao wei zheng, Ya Qi Mo, Thanh Tung Ho, Jun jie Lin, Jing jing Luo, Michael Aschner, Yue ming Jiang

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Manganese (Mn) and iron (Fe) are essential trace elements for humans, yet excessive exposure to Mn or Fe can accumulate in the central nervous system (CNS) and cause neurotoxicity. The purpose of this study was to investigate the effects of Mn and Fe exposure, alone or in combination, on inducing oxidative stress-induced neurological damage in rat cortical and SH-SY5Y cells, and to determine whether combined exposure to these metals increases their individual toxicity. Methods: SH-SY5Y cells and male Sprague-Dawley rats were used to observe the effects of oxidative stress-induced neurological damage induced by exposure to manganese and iron alone or in combination. To detect the expression of anti-oxidative stress-related proteins, Nrf2, HO-1, and NQO1, and the apoptosis-related proteins, Bcl2 and Bax, and the neurological damage-related protein, α-syn. To detect reactive oxygen species generation and apoptosis. To detect the expression of the rat cortical protein Nrf2. To detect the production of proinflammatory cytokines. Results: We demonstrate that juvenile developmental exposure to Mn and Fe and their combination impairs cognitive performance in rats by inducing oxidative stress causing neurodegeneration in the cortex. Mn, Fe, and their combined exposure increased the expression of ROS, Bcl2, Bax, and α-syn, activated the inflammatory factors IL-6 and IL-12, inhibited the activities of SOD and GSH, and induced oxidative stress-induced neurodegeneration both in rats and SH-SY5Y cells. Combined Mn-Fe exposure attenuated the oxidative stress induced by Mn and Fe exposure alone by increasing the expression of antioxidant factors Nrf2, HO-1, and NQO1. Conclusion: In both in vivo and in vitro studies, manganese and iron alone or in combination induced oxidative stress, leading to neuronal damage. In contrast, combined exposure to manganese and iron mitigated the oxidative stress induced by exposure to manganese and iron alone by increasing the expression of antioxidant factors. Therefore, studies to elucidate the main causes of toxicity and establish the molecular mechanisms of toxicity should help to develop more effective therapeutic modalities in the future.

Original languageEnglish (US)
Article number115853
JournalEcotoxicology and Environmental Safety
Volume270
DOIs
StatePublished - Jan 15 2024

Keywords

  • Combined exposure
  • Iron
  • Manganese
  • Nrf2
  • Oxidative stress
  • ROS

ASJC Scopus subject areas

  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Combined exposure to manganese and iron decreases oxidative stress-induced nerve damage by increasing Nrf2/HO-1/NQO1 expression'. Together they form a unique fingerprint.

Cite this