An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake

Jia Zhang, Dan Chen, Patrick Sweeney, Yunlei Yang

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

It is well recognized that ventromedial hypothalamus (VMH) serves as a satiety center in the brain. However, the feeding circuit for the VMH regulation of food intake remains to be defined. Here, we combine fiber photometry, chemo/optogenetics, virus-assisted retrograde tracing, ChR2-assisted circuit mapping and behavioral assays to show that selective activation of VMH neurons expressing steroidogenic factor 1 (SF1) rapidly inhibits food intake, VMH SF1 neurons project dense fibers to the paraventricular thalamus (PVT), selective chemo/optogenetic stimulation of the PVT-projecting SF1 neurons or their projections to the PVT inhibits food intake, and chemical genetic inactivation of PVT neurons diminishes SF1 neural inhibition of feeding. We also find that activation of SF1 neurons or their projections to the PVT elicits a flavor aversive effect, and selective optogenetic stimulation of ChR2-expressing SF1 projections to the PVT elicits direct excitatory postsynaptic currents. Together, our data reveal a neural circuit from VMH to PVT that inhibits food intake.

Original languageEnglish (US)
Article number6326
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 2020

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake'. Together they form a unique fingerprint.

Cite this