Airborne manganese exposure differentially affects end points of oxidative stress in an age- and sex-dependent manner

Keith M. Erikson, David C. Dorman, Lawrence H. Lash, Allison W. Dobson, Michael Aschner

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


Juvenile female and male (young) and 16-mo-old male (old) rats inhaled manganese in the form of manganese sulfate (MnSO4) at 0, 0.01, 0.1, and 0.5 mg Mn/m3 or manganese phosphate at 0.1 mg Mn/m3 in exposures of 6 h/d, 5 d/wk for 13 wk. We assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Although most brain regions in the three groups of animals were unaffected by manganese exposure in terms of GS protein levels, there was significantly increased protein (p<0.05) in the hippocampus and decreased protein in the hypothalamus of young male rats exposed to manganese phosphate as well as in the aged rats exposed to 0.1 mg/m 3 MnSO4. Conversely, GS protein was elevated in the olfactory bulb of females exposed to the high dose of MnSO4. Statistically significant decreases (p<0.05) in MT and GS mRNA as a result of manganese exposure were observed in the cerebellum, olfactory bulb, and hippocampus in the young male rats, in the hypothalamus in the young female rats, and in the hippocampus in the senescent males. Total GSH levels significantly (p<0.05) decreased in the olfactory bulb of manganese exposed young male rats and increased in the olfactory bulb of female rats exposed to manganese. Both the aged and young female rats had significantly decreased (p<0.05) GSH in the striatum resulting from manganese inhalation. The old male rats also had depleted GSH levels in the cerebellum and hypothalamus as a result of the 0.1-mg/m3 manganese phosphate exposure. These results demonstrate that age and sex are variables that must be considered when assessing the neurotoxicity of manganese.

Original languageEnglish (US)
Pages (from-to)49-62
Number of pages14
JournalBiological Trace Element Research
Issue number1
StatePublished - Jul 2004
Externally publishedYes


  • Brain
  • Glutamine synthetase
  • Glutathione
  • Manganese
  • Metallothionein
  • Oxidative stress
  • Rat

ASJC Scopus subject areas

  • Biochemistry, medical
  • Biochemistry
  • Clinical Biochemistry
  • Inorganic Chemistry
  • Endocrinology, Diabetes and Metabolism


Dive into the research topics of 'Airborne manganese exposure differentially affects end points of oxidative stress in an age- and sex-dependent manner'. Together they form a unique fingerprint.

Cite this