TY - JOUR
T1 - Acrylamide neuropathy. III. Spatiotemporal characteristics of nerve cell damage in forebrain.
AU - Lehning, E. J.
AU - Balaban, C. D.
AU - Ross, J. F.
AU - LoPachin, R. M.
N1 - Funding Information:
Research presented in this manuscript was supported by a grant (to R.M.L.) from the National Institute of Environmental Health Sciences (RO1 ES03830-16) and by funds provided by the Procter and Gamble Co., Cincinnati, OH.
Copyright:
This record is sourced from MEDLINE/PubMed, a database of the U.S. National Library of Medicine
PY - 2003/1
Y1 - 2003/1
N2 - Previous studies of acrylamide (ACR) neuropathy in rat PNS [Toxicol. Appl. Pharmacol. (1998) 151:211-221] and in spinal cord, brainstem and cerebellum [NeuroToxicology (2002a) 23:397-414; NeuroToxicology (2002b) 23:415-429] have suggested that axon degeneration was not a primary effect and was, therefore, of unclear neurotoxicological significance. To conclude our studies of neurodegeneration in rat CNS during ACR neurotoxicity, a cupric silver stain method was used to define spatiotemporal characteristics of nerve cell body, dendrite, axon and terminal argyrophilia in forebrain regions and nuclei. Rats were exposed to ACR at a dose-rate of either 50 mg/kg per day (i.p.) or 21 mg/kg per day (p.o.) and at selected times brains were removed and processed for silver staining. Results show that intoxication at either ACR dose-rate produced a terminalopathy, i.e. nerve terminal degeneration and swelling were present in the absence of significant argyrophilic changes in neuronal cell bodies, dendrites or axons. Exposure to the higher ACR dose-rate caused early onset (day 5), widespread nerve terminal degeneration in most of the major forebrain areas, e.g. cerebral cortex, thalamus, hypothalamus and basal ganglia. At the lower dose-rate, nerve terminal degeneration in the forebrain developed early (day 7) but exhibited a relatively limited spatial distribution, i.e. anteroventral thalamic nucleus and the pars reticulata of the substantia nigra. Several hippocampal regions were affected at a later time point (day 28), i.e. CA1 field and subicular complex. At both dose-rates, argyrophilic changes in forebrain nerve terminals developed prior to the onset of significant gait abnormalities. Thus, in forebrain, ACR intoxication produced a pure terminalopathy that developed prior to the onset of significant neurological changes and progressed as a function of exposure. Neither dose-rate used in this study was associated with axon degeneration in any forebrain region. Our findings indicate that nerve terminals were selectively affected in forebrain areas and, therefore, might be primary sites of ACR action.
AB - Previous studies of acrylamide (ACR) neuropathy in rat PNS [Toxicol. Appl. Pharmacol. (1998) 151:211-221] and in spinal cord, brainstem and cerebellum [NeuroToxicology (2002a) 23:397-414; NeuroToxicology (2002b) 23:415-429] have suggested that axon degeneration was not a primary effect and was, therefore, of unclear neurotoxicological significance. To conclude our studies of neurodegeneration in rat CNS during ACR neurotoxicity, a cupric silver stain method was used to define spatiotemporal characteristics of nerve cell body, dendrite, axon and terminal argyrophilia in forebrain regions and nuclei. Rats were exposed to ACR at a dose-rate of either 50 mg/kg per day (i.p.) or 21 mg/kg per day (p.o.) and at selected times brains were removed and processed for silver staining. Results show that intoxication at either ACR dose-rate produced a terminalopathy, i.e. nerve terminal degeneration and swelling were present in the absence of significant argyrophilic changes in neuronal cell bodies, dendrites or axons. Exposure to the higher ACR dose-rate caused early onset (day 5), widespread nerve terminal degeneration in most of the major forebrain areas, e.g. cerebral cortex, thalamus, hypothalamus and basal ganglia. At the lower dose-rate, nerve terminal degeneration in the forebrain developed early (day 7) but exhibited a relatively limited spatial distribution, i.e. anteroventral thalamic nucleus and the pars reticulata of the substantia nigra. Several hippocampal regions were affected at a later time point (day 28), i.e. CA1 field and subicular complex. At both dose-rates, argyrophilic changes in forebrain nerve terminals developed prior to the onset of significant gait abnormalities. Thus, in forebrain, ACR intoxication produced a pure terminalopathy that developed prior to the onset of significant neurological changes and progressed as a function of exposure. Neither dose-rate used in this study was associated with axon degeneration in any forebrain region. Our findings indicate that nerve terminals were selectively affected in forebrain areas and, therefore, might be primary sites of ACR action.
UR - http://www.scopus.com/inward/record.url?scp=0037271780&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037271780&partnerID=8YFLogxK
U2 - 10.1016/s0161-813x(02)00155-9
DO - 10.1016/s0161-813x(02)00155-9
M3 - Article
C2 - 12564388
AN - SCOPUS:0037271780
SN - 0161-813X
VL - 24
SP - 125
EP - 136
JO - NeuroToxicology
JF - NeuroToxicology
IS - 1
ER -