TY - JOUR
T1 - A pilot biomechanical study comparing a novel, intramedullary Nail/Plate construct to standard Dual-Plate fixation of intra-articular C2.3 distal humerus fractures
AU - Shah, Neil V.
AU - Hayes, Westley T.
AU - Wang, Hanbin
AU - Hordines, John C.
AU - Karakostas, Jonathan E.
AU - Paxinos, Odysseas
AU - Koehler, Steven M.
N1 - Funding Information:
The authors would like to thank Michael J. Sabarese, Nicole R. Vingan, and Ariana Moreno (Department of Orthopaedic Surgery, State University of New York (SUNY), Downstate Medical Center) for their invaluable contributions in specimen preparation. The authors would also like to thank TriMed Inc. for their in-kind donation of implants in order to complete our independent study.
Publisher Copyright:
© 2020
PY - 2020/10
Y1 - 2020/10
N2 - Background: The gold-standard treatment for intra-articular distal humerus fractures (DHFs) is dual-plate/dual-column fixation, though optimal orientation is not yet established. With a superior method not yet identified, we propose a load-sharing construct, combining absolute stability (extramedullary plate fixation) for distal articular fragments and relative stability (load-sharing intramedullary nail) for the metaphyseal segment. The purpose of this pilot study was to evaluate the biomechanical performance of a novel implant compared to orthogonal dual-plating. Materials and methods: Ten fresh-frozen matched-pairs of human cadaveric upper extremities with no prior elbow pathology/surgery were used. Pairs were randomized into two groups: Dual-Plate (medial and posterolateral) or novel Nail/Plate (cross-locked medial nail and posterolateral plate). AO/ASIF type 13-C2.3 multifragmentary fractures with simulated metaphyseal comminution. Biomechanical testing included stiffness (MPa) and load to failure (Newtons) in axial (100 cycles at 3 Hz at 20 N increments from 20 to 100 N) and coronal (varus/valgus; 4,000 cycles from 50N-100 N at 3 Hz) planes. Failed specimens were not analyzed and mechanisms were identified. For all failures, mechanisms were identified and reviewed by three consultant surgeons for revision vs. immobilization, to attempt to recreate a real-world scenario. All outcomes were compared between groups. Results: During stiffness testing, zero Nail/Plate specimens failed, but two (20%) Dual-Plate specimens failed (mechanisms: fracture diastasis; bone collapse and intussusception into osteotomy, yielding articular congruency loss). For remaining samples, Nail/Plate (n = 10) coronal (varus/valgus) stiffness was comparable to Dual-Plate (n = 8) constructs (41.5 vs. 39.0 MPa, p = 0.440). Remaining Dual-Plate constructs had greater axial overall stiffness than Nail/Plate (118.3 ± 48.3 vs. 95.6 ± 34.7 MPa, p = 0.020). Failure loads were comparable between Nail/Plate and Dual-Plate constructs (1,327.8 vs. 1,032.4 N, p = 0.170). Individual nail yield strength ranged from 1,101.1–1,124.4 N (n = 2). In review of all failures, the most common overall mechanism was fracture/osteotomy site posterolateral plate bending. Revision recommendation rate was comparable between constructs (Nail/Plate, 22.2% vs. Dual-Plate, 44.4%, p>0.05). Conclusions: The novel Nail/Plate construct demonstrated non-inferior coronal (varus/valgus) stiffness, despite producing lower axial stiffness than orthogonal dual-plating, potentially due to the load-sharing cross-locked design. Considering comparable biomechanical performance, with no failures and comparable recommendations for revision, this novel construct warrants further evaluation as an alternative to the gold-standard, dual-plate fixation method for intra-articular distal humerus fractures.
AB - Background: The gold-standard treatment for intra-articular distal humerus fractures (DHFs) is dual-plate/dual-column fixation, though optimal orientation is not yet established. With a superior method not yet identified, we propose a load-sharing construct, combining absolute stability (extramedullary plate fixation) for distal articular fragments and relative stability (load-sharing intramedullary nail) for the metaphyseal segment. The purpose of this pilot study was to evaluate the biomechanical performance of a novel implant compared to orthogonal dual-plating. Materials and methods: Ten fresh-frozen matched-pairs of human cadaveric upper extremities with no prior elbow pathology/surgery were used. Pairs were randomized into two groups: Dual-Plate (medial and posterolateral) or novel Nail/Plate (cross-locked medial nail and posterolateral plate). AO/ASIF type 13-C2.3 multifragmentary fractures with simulated metaphyseal comminution. Biomechanical testing included stiffness (MPa) and load to failure (Newtons) in axial (100 cycles at 3 Hz at 20 N increments from 20 to 100 N) and coronal (varus/valgus; 4,000 cycles from 50N-100 N at 3 Hz) planes. Failed specimens were not analyzed and mechanisms were identified. For all failures, mechanisms were identified and reviewed by three consultant surgeons for revision vs. immobilization, to attempt to recreate a real-world scenario. All outcomes were compared between groups. Results: During stiffness testing, zero Nail/Plate specimens failed, but two (20%) Dual-Plate specimens failed (mechanisms: fracture diastasis; bone collapse and intussusception into osteotomy, yielding articular congruency loss). For remaining samples, Nail/Plate (n = 10) coronal (varus/valgus) stiffness was comparable to Dual-Plate (n = 8) constructs (41.5 vs. 39.0 MPa, p = 0.440). Remaining Dual-Plate constructs had greater axial overall stiffness than Nail/Plate (118.3 ± 48.3 vs. 95.6 ± 34.7 MPa, p = 0.020). Failure loads were comparable between Nail/Plate and Dual-Plate constructs (1,327.8 vs. 1,032.4 N, p = 0.170). Individual nail yield strength ranged from 1,101.1–1,124.4 N (n = 2). In review of all failures, the most common overall mechanism was fracture/osteotomy site posterolateral plate bending. Revision recommendation rate was comparable between constructs (Nail/Plate, 22.2% vs. Dual-Plate, 44.4%, p>0.05). Conclusions: The novel Nail/Plate construct demonstrated non-inferior coronal (varus/valgus) stiffness, despite producing lower axial stiffness than orthogonal dual-plating, potentially due to the load-sharing cross-locked design. Considering comparable biomechanical performance, with no failures and comparable recommendations for revision, this novel construct warrants further evaluation as an alternative to the gold-standard, dual-plate fixation method for intra-articular distal humerus fractures.
KW - C2.3
KW - Distal humerus fracture
KW - Intra-articular
KW - Load bearing
KW - Load sharing
KW - Plate fixation
UR - http://www.scopus.com/inward/record.url?scp=85086915592&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086915592&partnerID=8YFLogxK
U2 - 10.1016/j.injury.2020.06.034
DO - 10.1016/j.injury.2020.06.034
M3 - Article
C2 - 32605784
AN - SCOPUS:85086915592
SN - 0020-1383
VL - 51
SP - 2148
EP - 2157
JO - Injury
JF - Injury
IS - 10
ER -