A mini-survey of ultracool dwarfs at 4.9 GHz

A. Antonova, J. G. Doyle, G. Hallinan, S. Bourke, A. Golden

Research output: Contribution to journalReview articlepeer-review

38 Scopus citations


Context. A selection of ultracool dwarfs are known to be radio active, with both gyrosynchrotron emission and the electron cyclotron maser instability being given as likely emission mechanisms.Aims. We explore whether ultracool dwarfs previously undetected at 8.5 GHz may be detectable at a lower frequency.Methods. We select a sample of fast rotating ultracool dwarfs with no detectable radio activity at 8.5 GHz, observing each of them at 4.9 GHz.Results. From the 8 dwarfs in our sample, we detect emission from 2MASS J07464256+2000321, with a mean flux level of 286 24 Jy. The light-curve of 2MASS J07464256+2000321, is dominated towards the end of the observation by a very bright, 100% left circularly polarized burst during which the flux reached 2.4 mJy. The burst was preceded by a raise in the level of activity, with the average flux being 160 Jy in the first hour of observation rising to 400 Jy in the 40 min before the burst. During both periods, there is significant variability.Conclusions. The detection of 100% circular polarization in the emission at 4.9 GHz points towards the electron cyclotron maser as the emission mechanism. However, the observations at 4.9 GHz and 8.5 GHz were not simultaneous, thus the actual fraction of dwarfs capable of producing radio emission, as well as the fraction of those that show periodic pulsations is still unclear, as indeed are the relative roles played by the electron cyclotron maser instability versus gyrosynchrotron emission, therefore we cannot assert if the previous non-detection at 8.5 GHz was due to a cut-off in emission between 4.9 and 8.4 GHz, or due to long term variability.

Original languageEnglish (US)
Pages (from-to)317-322
Number of pages6
JournalAstronomy and Astrophysics
Issue number1
StatePublished - Aug 2008
Externally publishedYes


  • Masers
  • Radiation mechanisms: general
  • Radio continuum: stars
  • Stars: low-mass, brown dwarfs

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'A mini-survey of ultracool dwarfs at 4.9 GHz'. Together they form a unique fingerprint.

Cite this