A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells

Sana Ahmed-Seghir, Manisha Jalan, Helen E. Grimsley, Aman Sharma, Shyam Twayana, Settapong T. Kosiyatrakul, Christopher Thompson, Carl L. Schildkraut, Simon N. Powell

Research output: Contribution to journalArticlepeer-review

Abstract

When replication forks encounter DNA lesions that cause polymerase stalling, a checkpoint pathway is activated. The ATR-dependent intra-S checkpoint pathway mediates detection and processing of sites of replication fork stalling to maintain genomic integrity. Several factors involved in the global checkpoint pathway have been identified, but the response to a single replication fork barrier (RFB) is poorly understood. We utilized the Escherichia coli-based Tus-Ter system in human MCF7 cells and showed that the Tus protein binding to TerB sequences creates an efficient site-specific RFB. The single fork RFB was sufficient to activate a local, but not global, ATR-dependent checkpoint response that leads to phosphorylation and accumulation of DNA damage sensor protein γH2AX, confined locally to within a kilobase of the site of stalling. These data support a model of local management of fork stalling, which allows global replication at sites other than the RFB to continue to progress without delay.

Original languageEnglish (US)
Article numberRP87357
JournaleLife
Volume12
DOIs
StatePublished - 2023

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells'. Together they form a unique fingerprint.

Cite this