Project Details
Description
Abstract:
Fluorescent biosensor techniques in cell biology now allow for the real-time interrogation of molecular processes
as they occur inside living cells at spatial and temporal resolutions of microns and seconds, respectively. I
have a prior and continued focus on the development of novel Förster resonance energy transfer (FRET)-
based biosensor technologies that utilize monomeric fluorescent proteins for exceptional sensitivity and probe
reversibility. In addition, a single-chain construction is used to facilitate quantitative analysis. I recently pioneered
the near-infrared (NIR)-FRET biosensor modality, which included the first simultaneous, orthogonal visualization
of cyan-yellow fluorescent protein-based FRET and NIR-FRET biosensors in single living cells. The resulting
data were the first true multiplex analysis of two important molecular switches in living cells, the Rac1 and RhoA
GTPases. This analysis revealed the direct coordination of these GTPases during cell migration in real-time.
Herein, I propose to study the coordination of Rho GTPases associated with important signaling pathways
by designing new biosensors for specific signaling nodes and utilizing the direct multiplex FRET imaging
approach. Specifically, I will first target the local-level coordination of Rho GTPase signaling in fibroblast cells
during migration, chemotaxis, and directional guidance. The coordination of RhoA versus Rac1 GTPases in
fibroblasts will be investigated by determining the role of a downstream target protein, the formin mDia1, which
is hypothesized to coordinate RhoA and Rac1 during cell motility. The direct multiplex imaging approach will be
used to evaluate pairwise biosensor signals. In addition, the RhoA and Rac1 pathways will be perturbed with
optogenetic tools to determine the GTPase coordination that is important for controlling cellular morphodynamics.
Next, these approaches will be applied to two systems that have important implications for human health and
disease. First, macrophage motility and directional guidance, which requires the coordination of Rho GTPases
during the chemotactic response to inflammatory chemokines, will be studied. Then, the multiplex imaging and
perturbation approaches will be applied to breast cancer invasion and migration, which are critical to controlling
tumor metastasis. Collectively, the coordination between Rho GTPases and the associated molecular signaling
that governs cell motility will be identified through the development of new biosensors that enable direct multiplex
probing of signaling networks.
Status | Active |
---|---|
Effective start/end date | 8/1/20 → 7/31/24 |
Funding
- National Institute of General Medical Sciences: $156,450.00
- National Institute of General Medical Sciences: $721,979.00
- National Institute of General Medical Sciences: $249,418.00
- National Institute of General Medical Sciences: $640,705.00
- National Institute of General Medical Sciences: $640,705.00
- National Institute of General Medical Sciences: $67,188.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.