Project Details
Description
The regulation of genes encoding enzymes that act on polysaccharides has
not been studied extensively in yeast. On the genetic level, the
regulation of the glucoamylase (STA) genes in Saccharomyces cerevisiae var.
diastaticus appears complex and different from the regulatory mechanisms
observed in inducible systems such as SUC, MAL and GAL. The proposal
addresses the regulatory mechanisms that control the expression of the STA
genes in S. cerevisiae var. diastaticus.
The STA genes are regulated both positively by GAM], GAM2 and GAM3 and
negatively by STA10 and MATa/MATalpha-dependent repression. Additionally,
genes identified as IST1, IST2,.INH1 and SGL1 have been proposed to be
repressors of STA gene expression; however, their relationship to each
other and the mechanism of their effects on STA gene expression are
unknown. The STA genes are also subject to carbon-catabolite repression.
Interestingly, the STA2 gene was found to contain consensus RAP1 protein
binding sites in its 5' upstream region as well as within its coding
region.
The STA2 gene of S. cerevisiae var. diastaticus will be used to investigate
the direct, indirect and developmental regulatory signals that control the
expression of members of the glucoamylase multigene family. The proposed
research will address several questions that relate to how regulatory
control is imposed on STA2 expression with the goal of characterizing
components of the regulatory network and possibly to explain their
functional, developmental and evolutionary significance. The specific
goals of the proposed project are as follows:
1. To determine whether STA10 acts as an activator or repressor of STA2
gene expression. To clone and characterize the STA10 gene. To generate a
bank of mutants that are affected in the expression of the STA genes.
2. To determine whether the STA10 protein is a DNA protein. To determine
which proteins interact with STA10-responsive cis-acting elements.
3. To genetically map the STA genes.
4.To determine the cis-acting regulatory sequences responsible for the
positive control of STA2. To isolate and clone the positively-acting
factors that interact with the STA2 upstream sequence.
5. To determine the effect of the RAP1 protein on the expression of STA2.
6. To characterize the MATa/MATalpha-dependent repression of STA2.
7. To identify other genes that affect glucoamylase gene expression and to
determine whether they are synonymous with known genes.
Status | Finished |
---|---|
Effective start/end date | 5/1/92 → 4/30/97 |
ASJC
- Genetics
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.