TY - JOUR
T1 - ZNF804A transcriptional networks in differentiating neurons derived from induced pluripotent stem cells of human origin
AU - Chen, Jian
AU - Lin, Mingyan
AU - Hrabovsky, Anastasia
AU - Pedrosa, Erika
AU - Dean, Jason
AU - Jain, Swati
AU - Zheng, Deyou
AU - Lachman, Herbert M.
N1 - Funding Information:
This work was supported by the National Institute of Mental Health (MH073164, MH097893, MH099427, and MH087840).
Publisher Copyright:
© 2015 Chen et al.
PY - 2015/4/23
Y1 - 2015/4/23
N2 - ZNF804A (Zinc Finger Protein 804A) has been identified as a candidate gene for schizophrenia (SZ), autism spectrum disorders (ASD), and bipolar disorder (BD) in replicated genome wide association studies (GWAS) and by copy number variation (CNV) analysis. Although its function has not been well-characterized, ZNF804A contains a C2H2-type zinc-finger domain, suggesting that it has DNA binding properties, and consequently, a role in regulating gene expression. To further explore the role of ZNF804A on gene expression and its downstream targets, we used a gene knockdown (KD) approach to reduce its expression in neural progenitor cells (NPCs) derived from induced pluripotent stem cells (iPSCs). KD was accomplished by RNA interference (RNAi) using lentiviral particles containing shRNAs that target ZNF804A mRNA. Stable transduced NPC lines were generated after puromycin selection. A control cell line expressing a random (scrambled) shRNA was also generated. Neuronal differentiation was induced, RNA was harvested after 14 days and transcriptome analysis was carried out using RNA-seq. 1815 genes were found to be differentially expressed at a nominally significant level (p<0.05); 809 decreased in expression in the KD samples, while 1106 increased. Of these, 370 achieved genome wide significance (FDR<0.05); 125 were lower in the KD samples, 245 were higher. Pathway analysis showed that genes involved in interferon-signaling were enriched among those that were down-regulated in the KD samples. Correspondingly, ZNF804A KD was found to affect in-terferon- alpha 2 (IFNA2)-mediated gene expression. The findings suggest that ZNF804A may affect a differentiating neuron's response to inflammatory cytokines, which is consistent with models of SZ and ASD that support a role for infectious disease, and/or autoimmunity in a subgroup of patients.
AB - ZNF804A (Zinc Finger Protein 804A) has been identified as a candidate gene for schizophrenia (SZ), autism spectrum disorders (ASD), and bipolar disorder (BD) in replicated genome wide association studies (GWAS) and by copy number variation (CNV) analysis. Although its function has not been well-characterized, ZNF804A contains a C2H2-type zinc-finger domain, suggesting that it has DNA binding properties, and consequently, a role in regulating gene expression. To further explore the role of ZNF804A on gene expression and its downstream targets, we used a gene knockdown (KD) approach to reduce its expression in neural progenitor cells (NPCs) derived from induced pluripotent stem cells (iPSCs). KD was accomplished by RNA interference (RNAi) using lentiviral particles containing shRNAs that target ZNF804A mRNA. Stable transduced NPC lines were generated after puromycin selection. A control cell line expressing a random (scrambled) shRNA was also generated. Neuronal differentiation was induced, RNA was harvested after 14 days and transcriptome analysis was carried out using RNA-seq. 1815 genes were found to be differentially expressed at a nominally significant level (p<0.05); 809 decreased in expression in the KD samples, while 1106 increased. Of these, 370 achieved genome wide significance (FDR<0.05); 125 were lower in the KD samples, 245 were higher. Pathway analysis showed that genes involved in interferon-signaling were enriched among those that were down-regulated in the KD samples. Correspondingly, ZNF804A KD was found to affect in-terferon- alpha 2 (IFNA2)-mediated gene expression. The findings suggest that ZNF804A may affect a differentiating neuron's response to inflammatory cytokines, which is consistent with models of SZ and ASD that support a role for infectious disease, and/or autoimmunity in a subgroup of patients.
UR - http://www.scopus.com/inward/record.url?scp=84928398433&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928398433&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0124597
DO - 10.1371/journal.pone.0124597
M3 - Article
C2 - 25905630
AN - SCOPUS:84928398433
SN - 1932-6203
VL - 10
JO - PLoS One
JF - PLoS One
IS - 4
M1 - e0124597
ER -