TY - JOUR
T1 - Thermodynamic analysis of transition-state features in picomolar inhibitors of human 5′-methylthioadenosine phosphorylase
AU - Guan, Rong
AU - Tyler, Peter C.
AU - Evans, Gary B.
AU - Schramm, Vern L.
PY - 2013/11/19
Y1 - 2013/11/19
N2 - Human 5′-methylthioadenosine phosphorylase (MTAP) is solely responsible for 5′-methylthioadenosine (MTA) metabolism to permit S-adenosylmethionine salvage. Transition-state (TS) analogues of MTAP are in development as anticancer candidates. TS analogues of MTAP incorporate a cationic nitrogen and a protonated 9-deazaadenine leaving group, which are mimics of the ribocation transition state. MT-ImmA and MT-DADMe-ImmA are two examples of these TS analogues. Thermodynamic analysis of MTA, inhibitor, and phosphate binding reveals the cationic nitrogen to provide-2.6 and-3.6 kcal/mol binding free energy for MT-ImmA and MT-DADMe-ImmA, respectively. The protonated deazaadenine provides an additional-1.3 (MT-ImmA) to-1.7 kcal/mol (MT-DADMe-ImmA). MT-DADMe-ImmA is a better match in TS geometry than MT-ImmA and is thermodynamically favored. Binding of TS analogues to the MTAP/phosphate complex is fully entropic, in contrast to TS analogue binding to the related human purine nucleoside phosphorylase/phosphate complex, which is fully enthalpic (Guan, R., Ho, M. C., Brenowitz, M., Tyler, P. C., Evans, G. B., Almo, S. C., and Schramm, V. L. (2011) Biochemistry 50, 10408-10417). The binding thermodynamics of phosphate or TS analogues alone to MTAP are fully dominated by enthalpy. Phosphate anchored in the catalytic site forms an ion pair with the cationic TS analogue to cause stabilization of the enzyme structure in the ternary complex. The ternary-induced conformational changes convert the individual enthalpic binding energies to entropy, resulting in a presumed shift of the protein architecture toward the transition state. Formation of the ternary TS analogue complex with MTAP induces a remarkable increase in thermal stability (ΔTm 28 C). The enthalpic, entropic, and protein-stability features of TS analogue binding to human MTAP are resolved in these studies.
AB - Human 5′-methylthioadenosine phosphorylase (MTAP) is solely responsible for 5′-methylthioadenosine (MTA) metabolism to permit S-adenosylmethionine salvage. Transition-state (TS) analogues of MTAP are in development as anticancer candidates. TS analogues of MTAP incorporate a cationic nitrogen and a protonated 9-deazaadenine leaving group, which are mimics of the ribocation transition state. MT-ImmA and MT-DADMe-ImmA are two examples of these TS analogues. Thermodynamic analysis of MTA, inhibitor, and phosphate binding reveals the cationic nitrogen to provide-2.6 and-3.6 kcal/mol binding free energy for MT-ImmA and MT-DADMe-ImmA, respectively. The protonated deazaadenine provides an additional-1.3 (MT-ImmA) to-1.7 kcal/mol (MT-DADMe-ImmA). MT-DADMe-ImmA is a better match in TS geometry than MT-ImmA and is thermodynamically favored. Binding of TS analogues to the MTAP/phosphate complex is fully entropic, in contrast to TS analogue binding to the related human purine nucleoside phosphorylase/phosphate complex, which is fully enthalpic (Guan, R., Ho, M. C., Brenowitz, M., Tyler, P. C., Evans, G. B., Almo, S. C., and Schramm, V. L. (2011) Biochemistry 50, 10408-10417). The binding thermodynamics of phosphate or TS analogues alone to MTAP are fully dominated by enthalpy. Phosphate anchored in the catalytic site forms an ion pair with the cationic TS analogue to cause stabilization of the enzyme structure in the ternary complex. The ternary-induced conformational changes convert the individual enthalpic binding energies to entropy, resulting in a presumed shift of the protein architecture toward the transition state. Formation of the ternary TS analogue complex with MTAP induces a remarkable increase in thermal stability (ΔTm 28 C). The enthalpic, entropic, and protein-stability features of TS analogue binding to human MTAP are resolved in these studies.
UR - http://www.scopus.com/inward/record.url?scp=84888256830&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888256830&partnerID=8YFLogxK
U2 - 10.1021/bi401188w
DO - 10.1021/bi401188w
M3 - Article
C2 - 24148083
AN - SCOPUS:84888256830
SN - 0006-2960
VL - 52
SP - 8313
EP - 8322
JO - Biochemistry
JF - Biochemistry
IS - 46
ER -