TY - JOUR
T1 - Therapeutic effect of human ghrelin and growth hormone
T2 - Attenuation of immunosuppression in septic aged rats
AU - Zhou, Mian
AU - Yang, Weng Lang
AU - Aziz, Monowar
AU - Ma, Gaifeng
AU - Wang, Ping
N1 - Funding Information:
This study was supported by the National Institutes of Health (NIH) grant R35GM118337 to PW.
Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/10
Y1 - 2017/10
N2 - Sepsis is a leading cause of mortality in intensive care units, and is more common in the geriatric population. The control of hyperinflammation has been suggested as a therapeutic approach in sepsis, but to date clinical trials utilizing this strategy have not lead to an effective treatment. In addition to hyperinflammation, patients with sepsis often experience a state of immunosuppression, which serves as an important determinant for increased morbidity and mortality. We previously used aged animals to demonstrate the effectiveness of combined treatment with human ghrelin (Ghr) and human growth hormone (GH) in improving organ injury and survival in septic animals. Here, we hypothesized that combined treatment with Ghr and GH could improve immune function in septic aged animals. Male 24-month-old rats were subjected to cecal ligation and puncture (CLP) for sepsis induction. Human Ghr (80 nmol/kg BW) plus GH (50 μg/kg BW) or vehicle (normal saline) was administrated subcutaneously at 5 h after CLP. The ex vivo production of TNF-α, IL-6 and IL-10 to LPS-stimulation, as well as TNF-α, IL-6, IL-10 and IFN-γ production to anti-CD3/anti-CD28 antibody-stimulation, in splenocytes isolated 20 h after CLP, was significantly decreased compared to production of these cytokines in splenocytes from sham animals. The production of cytokines from splenocytes isolated from septic animals that received the combined treatment, however, was significantly higher than from those isolated from vehicle-treated septic animals. Combined treatment prevented the loss of splenic CD4+ and CD8+ T cells in septic aged rats, and reduced lymphocyte apoptosis. Combined treatment also inhibited an increase in the regulatory T cell (Treg) population and expression of the immune co-inhibitory molecule PD-1 in the spleens of septic aged rats. In contrast, expression of HLA-DR was increased after combined treatment with Ghr and GH. Based on these findings, we conclude that co-administration of Ghr and GH is a promising therapeutic tool for reversing immunosuppression caused by sepsis in the geriatric population. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
AB - Sepsis is a leading cause of mortality in intensive care units, and is more common in the geriatric population. The control of hyperinflammation has been suggested as a therapeutic approach in sepsis, but to date clinical trials utilizing this strategy have not lead to an effective treatment. In addition to hyperinflammation, patients with sepsis often experience a state of immunosuppression, which serves as an important determinant for increased morbidity and mortality. We previously used aged animals to demonstrate the effectiveness of combined treatment with human ghrelin (Ghr) and human growth hormone (GH) in improving organ injury and survival in septic animals. Here, we hypothesized that combined treatment with Ghr and GH could improve immune function in septic aged animals. Male 24-month-old rats were subjected to cecal ligation and puncture (CLP) for sepsis induction. Human Ghr (80 nmol/kg BW) plus GH (50 μg/kg BW) or vehicle (normal saline) was administrated subcutaneously at 5 h after CLP. The ex vivo production of TNF-α, IL-6 and IL-10 to LPS-stimulation, as well as TNF-α, IL-6, IL-10 and IFN-γ production to anti-CD3/anti-CD28 antibody-stimulation, in splenocytes isolated 20 h after CLP, was significantly decreased compared to production of these cytokines in splenocytes from sham animals. The production of cytokines from splenocytes isolated from septic animals that received the combined treatment, however, was significantly higher than from those isolated from vehicle-treated septic animals. Combined treatment prevented the loss of splenic CD4+ and CD8+ T cells in septic aged rats, and reduced lymphocyte apoptosis. Combined treatment also inhibited an increase in the regulatory T cell (Treg) population and expression of the immune co-inhibitory molecule PD-1 in the spleens of septic aged rats. In contrast, expression of HLA-DR was increased after combined treatment with Ghr and GH. Based on these findings, we conclude that co-administration of Ghr and GH is a promising therapeutic tool for reversing immunosuppression caused by sepsis in the geriatric population. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
KW - Aging
KW - Ghrelin
KW - Growth hormone
KW - Immunosuppression
KW - Sepsis
UR - http://www.scopus.com/inward/record.url?scp=85012277292&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85012277292&partnerID=8YFLogxK
U2 - 10.1016/j.bbadis.2017.01.014
DO - 10.1016/j.bbadis.2017.01.014
M3 - Article
C2 - 28115288
AN - SCOPUS:85012277292
SN - 0925-4439
VL - 1863
SP - 2584
EP - 2593
JO - Biochimica et Biophysica Acta - Molecular Basis of Disease
JF - Biochimica et Biophysica Acta - Molecular Basis of Disease
IS - 10
ER -