TY - JOUR
T1 - The Role of Angiogenesis in the Persistence of Chemoresistance in Epithelial Ovarian Cancer
AU - Nusrat, Osama
AU - Belotte, Jimmy
AU - Fletcher, Nicole M.
AU - Memaj, Ira
AU - Saed, Mohammed G.
AU - Diamond, Michael P.
AU - Saed, Ghassan M.
PY - 2016/11/1
Y1 - 2016/11/1
N2 - Objective: Chemoresistance remains a major challenge in the treatment of ovarian cancer. As part of a survival mechanism, tumor cells have been shown to release proangiogenic factors, such as vascular endothelial growth factor (VEGF), through a mechanism that involves the upregulation of hypoxia-induced factor (HIF)-1α. The objective of this study was to compare the expression of VEGF and its receptors (R1 and R2) as well as HIF-1α in chemoresistant epithelial ovarian cancer (EOC) cells to their chemosensitive counterparts and determine their impact on angiogenesis. Methods: Two human EOC cell lines, MDAH-2774 and SKOV-3, and their cisplatin- or taxotere-resistant counterparts were used. Total RNA and protein were subjected to real-time reverse transcriptase-polymerase chain reaction, immunoprecipitation/Western blot and enzyme-linked immunosorbent assay to evaluate the expression of VEGF, VEGF receptors (R1 and R2), and HIF-1α. Angiogenesis was assessed with an in vitro angiogenesis assay. Data were analyzed using independent Student t tests and chi-square. Results: Both taxotere- and cisplatin-resistant MDAH-2774 and SKOV-3 EOC cell lines manifested a significant decrease in VEGF, VEGF receptors, HIF-1α messenger RNA, and protein levels as compared to their chemosensitive counterparts. There was a significant decrease in the number and thickness of polygon blood vessel formation in chemoresistant EOC cells compared to chemosensitive counterparts. Conclusion: Cisplatin- and taxotere-resistant EOC cells are characterized by lower VEGF, VEGF receptors, and HIF-1α, and decreased angiogenesis. These findings may indicate a decrease in drug delivery at the tumor site, hence allowing the persistence of chemoresistant EOC cells.
AB - Objective: Chemoresistance remains a major challenge in the treatment of ovarian cancer. As part of a survival mechanism, tumor cells have been shown to release proangiogenic factors, such as vascular endothelial growth factor (VEGF), through a mechanism that involves the upregulation of hypoxia-induced factor (HIF)-1α. The objective of this study was to compare the expression of VEGF and its receptors (R1 and R2) as well as HIF-1α in chemoresistant epithelial ovarian cancer (EOC) cells to their chemosensitive counterparts and determine their impact on angiogenesis. Methods: Two human EOC cell lines, MDAH-2774 and SKOV-3, and their cisplatin- or taxotere-resistant counterparts were used. Total RNA and protein were subjected to real-time reverse transcriptase-polymerase chain reaction, immunoprecipitation/Western blot and enzyme-linked immunosorbent assay to evaluate the expression of VEGF, VEGF receptors (R1 and R2), and HIF-1α. Angiogenesis was assessed with an in vitro angiogenesis assay. Data were analyzed using independent Student t tests and chi-square. Results: Both taxotere- and cisplatin-resistant MDAH-2774 and SKOV-3 EOC cell lines manifested a significant decrease in VEGF, VEGF receptors, HIF-1α messenger RNA, and protein levels as compared to their chemosensitive counterparts. There was a significant decrease in the number and thickness of polygon blood vessel formation in chemoresistant EOC cells compared to chemosensitive counterparts. Conclusion: Cisplatin- and taxotere-resistant EOC cells are characterized by lower VEGF, VEGF receptors, and HIF-1α, and decreased angiogenesis. These findings may indicate a decrease in drug delivery at the tumor site, hence allowing the persistence of chemoresistant EOC cells.
KW - and hypoxia-inducible factor-1α
KW - chemoresistance
KW - ovarian cancer
KW - vascular endothelial growth factor
UR - http://www.scopus.com/inward/record.url?scp=84991299997&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84991299997&partnerID=8YFLogxK
U2 - 10.1177/1933719116645191
DO - 10.1177/1933719116645191
M3 - Article
C2 - 27122375
AN - SCOPUS:84991299997
SN - 1933-7191
VL - 23
SP - 1484
EP - 1492
JO - Reproductive Sciences
JF - Reproductive Sciences
IS - 11
ER -