Abstract
Background: Reexposure to methamphetamine with a single “priming dose” can trigger intense cravings and precipitate relapse in methamphetamine-dependent individuals. The acyclic cucurbit[n]uril “molecular container” calabadion-2 shows a high affinity to bind and sequester methamphetamine in vitro and attenuates its locomotor-stimulating effect in rats. The present study investigates whether pretreatment with calabadion-2 is sufficient to prevent the reinstatement of drug seeking by a priming dose of methamphetamine in rats. Methods: Male Long-Evans rats were trained to self-administer i.v. methamphetamine (0.06 mg/kg/infusion). Following 10 days of stable self-administration, rats underwent extinction training and were subsequently tested on a multi-phase reinstatement procedure. Drug-primed reinstatement sessions (0.3 mg/kg methamphetamine, i.v.) were preceded by either saline or calabadion-2 (130 mg/kg). Additional reinstatement tests were conducted after administration of yohimbine (1.0 mg/ kg, i.v.) to define the pharmacological specificity of calabadion-2. Results: Pretreatment with calabadion-2 significantly attenuated methamphetamine-induced reinstatement of responding. Cal2 did not affect drug-seeking behavior stimulated by the pharmacological stressor yohimbine, indicating a mechanism of action specific to methamphetamine. Conclusions: These results demonstrate the effectiveness of calabadion-2 in a preclinical model relapse-like behavior. With further structural optimization, molecular containers may provide a novel and efficacious pharmacokinetic approach to relapse prevention for methamphetamine-dependent individuals.
Original language | English (US) |
---|---|
Pages (from-to) | 401-405 |
Number of pages | 5 |
Journal | International Journal of Neuropsychopharmacology |
Volume | 23 |
Issue number | 6 |
DOIs | |
State | Published - 2021 |
Externally published | Yes |
Keywords
- Methamphetamine
- Reinstatement
- Relapse
- Self-administration
ASJC Scopus subject areas
- Medicine(all)