TY - JOUR
T1 - Tbx1
T2 - Identification of a 22q11.2 gene as a risk factor for autism spectrum disorder in a mouse model
AU - Hiramoto, Takeshi
AU - Kang, Gina
AU - Suzuki, Go
AU - Satoh, Yasushi
AU - Kucherlapati, Raju
AU - Watanabe, Yasuhiro
AU - Hiroi, Noboru
N1 - Funding Information:
This work was supported by the National Institute of Health (HD05311), NARSAD Independent Investigator Award and the Maltz Foundation to N.H. and funds from the Smoking Research Foundation grant to Y.W.
PY - 2011/12
Y1 - 2011/12
N2 - Although twin studies indicate clear genetic bases of autism spectrum disorder (ASD), the precise mechanisms through which genetic variations causally result in ASD are poorly understood. Individuals with 3 Mb and nested 1.5 Mb hemizygosity of the chromosome 22q11.2 represent genetically identifiable cases of ASD. However, because more than 30 genes are deleted even in the minimal deletion cases of 22q11.2 deficiency, the individual 22q11.2 gene(s) responsible for ASD remain elusive. Here, we examined the impact of constitutive heterozygosity of Tbx1, a 22q11.2 gene, on the behavioral phenotypes of ASD and characterized the regional and cellular expression of its mRNA and protein in mice. Congenic Tbx1 heterozygous (HT) mice were impaired in social interaction, ultrasonic vocalization, memory-based behavioral alternation, working memory and thigmotaxis, compared with wild-type (WT) mice. These phenotypes were not due to nonspecific alterations in olfactory function, exploratory behavior, motor movement or anxiety-related behavior. Tbx1 mRNA and protein were ubiquitously expressed throughout the brains of C57BL/6J mice, but protein expression was enriched in regions that postnatally retain the capacity of neurogenesis, and in fact, postnatally proliferating cells expressed Tbx1. In postnatally derived hippocampal culture cells of C57BL/6J mice, Tbx1 levels were higher during proliferation than during differentiation, and expressed in neural progenitor cells, immature and matured neurons and glial cells. Taken together, our data suggest that Tbx1 is a gene responsible for the phenotypes of 22q11.2 hemizygosity-associated ASD possibly through its role in diverse cell types, including postnatally and prenatally generated neurons.
AB - Although twin studies indicate clear genetic bases of autism spectrum disorder (ASD), the precise mechanisms through which genetic variations causally result in ASD are poorly understood. Individuals with 3 Mb and nested 1.5 Mb hemizygosity of the chromosome 22q11.2 represent genetically identifiable cases of ASD. However, because more than 30 genes are deleted even in the minimal deletion cases of 22q11.2 deficiency, the individual 22q11.2 gene(s) responsible for ASD remain elusive. Here, we examined the impact of constitutive heterozygosity of Tbx1, a 22q11.2 gene, on the behavioral phenotypes of ASD and characterized the regional and cellular expression of its mRNA and protein in mice. Congenic Tbx1 heterozygous (HT) mice were impaired in social interaction, ultrasonic vocalization, memory-based behavioral alternation, working memory and thigmotaxis, compared with wild-type (WT) mice. These phenotypes were not due to nonspecific alterations in olfactory function, exploratory behavior, motor movement or anxiety-related behavior. Tbx1 mRNA and protein were ubiquitously expressed throughout the brains of C57BL/6J mice, but protein expression was enriched in regions that postnatally retain the capacity of neurogenesis, and in fact, postnatally proliferating cells expressed Tbx1. In postnatally derived hippocampal culture cells of C57BL/6J mice, Tbx1 levels were higher during proliferation than during differentiation, and expressed in neural progenitor cells, immature and matured neurons and glial cells. Taken together, our data suggest that Tbx1 is a gene responsible for the phenotypes of 22q11.2 hemizygosity-associated ASD possibly through its role in diverse cell types, including postnatally and prenatally generated neurons.
UR - http://www.scopus.com/inward/record.url?scp=81855173456&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=81855173456&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddr404
DO - 10.1093/hmg/ddr404
M3 - Article
C2 - 21908517
AN - SCOPUS:81855173456
SN - 0964-6906
VL - 20
SP - 4775
EP - 4785
JO - Human Molecular Genetics
JF - Human Molecular Genetics
IS - 24
M1 - ddr404
ER -