TY - JOUR
T1 - Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides
AU - Grove, Tyler L.
AU - Himes, Paul M.
AU - Hwang, Sungwon
AU - Yumerefendi, Hayretin
AU - Bonanno, Jeffrey B.
AU - Kuhlman, Brian
AU - Almo, Steven C.
AU - Bowers, Albert A.
N1 - Funding Information:
The authors would like to thank P. Hanzelmann (University of Wuerzburg for pPH151 and the Tamayo Lab (UNC) for allowing us to use their anaerobic chamber. We would also like to thank B. Li (UNC Chapel Hill) and C. Neumann (Seattle Genetics) for informative discussions and careful reading of the manuscript. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the Lilly Research Laboratories Collaborative Access Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon Source was provided by Eli Lilly Company, which operates the facility. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817). GM/CA CAT has been funded in whole or in part with Federal funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Science (Y1-GM-1104). AAB is a Beckman Young Investigator and acknowledges support by Arnold & Mabel Beckman Foundation. This work was supported in part by NIH P01 GM118303-01.
Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/8/30
Y1 - 2017/8/30
N2 - Sactipeptides are ribosomally synthesized peptides that contain a characteristic thioether bridge (sactionine bond) that is installed posttranslationally and is absolutely required for their antibiotic activity. Sactipeptide biosynthesis requires a unique family of radical SAM enzymes, which contain multiple [4Fe-4S] clusters, to form the requisite thioether bridge between a cysteine and the α-carbon of an opposing amino acid through radical-based chemistry. Here we present the structure of the sactionine bond-forming enzyme CteB, from Clostridium thermocellum ATCC 27405, with both SAM and an N-terminal fragment of its peptidyl-substrate at 2.04 Å resolution. CteB has the (β/α)6-TIM barrel fold that is characteristic of radical SAM enzymes, as well as a C-terminal SPASM domain that contains two auxiliary [4Fe-4S] clusters. Importantly, one [4Fe-4S] cluster in the SPASM domain exhibits an open coordination site in absence of peptide substrate, which is coordinated by a peptidyl-cysteine residue in the bound state. The crystal structure of CteB also reveals an accessory N-terminal domain that has high structural similarity to a recently discovered motif present in several enzymes that act on ribosomally synthesized and post-translationally modified peptides (RiPPs), known as a RiPP precursor peptide recognition element (RRE). This crystal structure is the first of a sactionine bond forming enzyme and sheds light on structures and mechanisms of other members of this class such as AlbA or ThnB.
AB - Sactipeptides are ribosomally synthesized peptides that contain a characteristic thioether bridge (sactionine bond) that is installed posttranslationally and is absolutely required for their antibiotic activity. Sactipeptide biosynthesis requires a unique family of radical SAM enzymes, which contain multiple [4Fe-4S] clusters, to form the requisite thioether bridge between a cysteine and the α-carbon of an opposing amino acid through radical-based chemistry. Here we present the structure of the sactionine bond-forming enzyme CteB, from Clostridium thermocellum ATCC 27405, with both SAM and an N-terminal fragment of its peptidyl-substrate at 2.04 Å resolution. CteB has the (β/α)6-TIM barrel fold that is characteristic of radical SAM enzymes, as well as a C-terminal SPASM domain that contains two auxiliary [4Fe-4S] clusters. Importantly, one [4Fe-4S] cluster in the SPASM domain exhibits an open coordination site in absence of peptide substrate, which is coordinated by a peptidyl-cysteine residue in the bound state. The crystal structure of CteB also reveals an accessory N-terminal domain that has high structural similarity to a recently discovered motif present in several enzymes that act on ribosomally synthesized and post-translationally modified peptides (RiPPs), known as a RiPP precursor peptide recognition element (RRE). This crystal structure is the first of a sactionine bond forming enzyme and sheds light on structures and mechanisms of other members of this class such as AlbA or ThnB.
UR - http://www.scopus.com/inward/record.url?scp=85028659334&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028659334&partnerID=8YFLogxK
U2 - 10.1021/jacs.7b01283
DO - 10.1021/jacs.7b01283
M3 - Article
C2 - 28704043
AN - SCOPUS:85028659334
SN - 0002-7863
VL - 139
SP - 11734
EP - 11744
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 34
ER -