Modulation of the insulin growth factor II/mannose 6-phosphate receptor of microvascular endothelial cells by phorbol ester via protein kinase C

K. Q. Hu, J. M. Backer, G. Sahagian, E. P. Feener, G. L. King

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


Phosphorylation of hormone receptors by protein kinase C (PKC) may be involved in the regulation of receptor recycling. We have studied the recycling and the phosphorylation state of the insulin growth factor (IGF) II/mannose 6-phosphate (Man-6-P) receptor in microvascular endothelial cells from rat adipose tissue. Scatchard analysis showed these cells have over 2 x 106 receptors/cell with an affinity constant of 1 x 109 M-1. In the presence of phorbol myristate acetate (PMA), an activator of PKC and analog of diacylglycerol, IGF-II receptor number increased in the plasma membrane by 60% without changes in the binding affinity. This increase in cell surface receptor number was confirmed by affinity cross-linking and 125I-surface labeling studies, occurred with a half-time of 20 min, and was reversible upon withdrawal of PMA. The redistribution of IGF-II/Man-6-P receptors was not due to an inhibition of internalization which was in fact stimulated by PMA. The effect of PMA on IGF-II receptor recycling correlated with its stimulation of PKC activity. Furthermore, after down-regulation of cellular PKC levels by preincubation with PMA, PMA was unable to activate residual PKC activity in the membranous pool or increase IGF-II receptor number at the cell surface. The phosphorylation state of the IGF-II/Man-6-P receptor was determined by 32P labeling of intact cells and immunoprecipitation with anti-receptor antibodies. In the basal state, the receptor was phosphorylated only on serine residues which was increased by 75% after treatment with PMA. In contrast, IGF-II decreased receptor phosphorylation and plasma membrane binding in a parallel and dose-dependent manner. Thus, PKC-stimulated serine phosphorylation of IGF-II/Man-6-P receptor may promote the translocation of the receptor to the cell surface, whereas IGF-II-stimulated dephosphorylation of the receptor may lead to a decrease in the number of cell surface receptors. These data suggest a role for PKC-mediated serine phosphorylation in the regulation of intracellular trafficking of receptors in the endothelial cells.

Original languageEnglish (US)
Pages (from-to)13864-13870
Number of pages7
JournalJournal of Biological Chemistry
Issue number23
StatePublished - 1990
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Modulation of the insulin growth factor II/mannose 6-phosphate receptor of microvascular endothelial cells by phorbol ester via protein kinase C'. Together they form a unique fingerprint.

Cite this