TY - JOUR
T1 - Manganese-induced downregulation of astroglial glutamine transporter SNAT3 involves ubiquitin-mediated proteolytic system
AU - Sidoryk-Wecgrzynowicz, Marta
AU - Lee, Eun Sook
AU - Ni, Mingwei
AU - Aschner, Michael
PY - 2010/12
Y1 - 2010/12
N2 - SNAT3 is a major facilitator of glutamine (Gln) efflux from astrocytes, supplying Gln to neurons for neurotransmitter synthesis. Our previous investigations have shown that, in primary cortical astrocyte cultures, SNAT3 protein is degraded after exposure to manganese (Mn2+). The present studies were performed to identify the processes responsible for this effect. One of the well-established mechanisms for protein-level regulation is posttranslational modification via ubiquitination, which leads to the rapid degradation of proteins by the 26S proteasome pathway. Here, we show that astrocytic SNAT3 directly interacts with the ubiquitin ligase, Nedd4-2 (neural precursor cells expressed developmentally downregulated 4-2), and that Mn2+ increases both Nedd4-2 mRNA and protein levels. Additionally, we have found that Mn2+ exposure elevates astrocytic ubiquitin B mRNA expression, free ubiquitin protein levels, and total protein ubiquitination. Furthermore, Mn2+ effectively decreases astrocytic mRNA expression and the phosphorylation of serum and glucocorticoid-inducible kinase, a regulatory protein, which, in the active phosphorylated form, is responsible for the phosphorylation and subsequent inactivation of Nedd4-2. Additional findings establish that Mn2+ increases astrocytic caspase-like proteolytic proteasome activity and that the Mn2+-dependent degradation of SNAT3 protein is blocked by the proteasome inhibitors, N-acetylleu-leu-norleucinal and lactacystin. Combined, these results demonstrate that Mn2+-induced SNAT3 protein degradation and the dysregulation of Gln homeostasis in primary astrocyte cultures proceeds through the ubiquitin-mediated proteolytic system.
AB - SNAT3 is a major facilitator of glutamine (Gln) efflux from astrocytes, supplying Gln to neurons for neurotransmitter synthesis. Our previous investigations have shown that, in primary cortical astrocyte cultures, SNAT3 protein is degraded after exposure to manganese (Mn2+). The present studies were performed to identify the processes responsible for this effect. One of the well-established mechanisms for protein-level regulation is posttranslational modification via ubiquitination, which leads to the rapid degradation of proteins by the 26S proteasome pathway. Here, we show that astrocytic SNAT3 directly interacts with the ubiquitin ligase, Nedd4-2 (neural precursor cells expressed developmentally downregulated 4-2), and that Mn2+ increases both Nedd4-2 mRNA and protein levels. Additionally, we have found that Mn2+ exposure elevates astrocytic ubiquitin B mRNA expression, free ubiquitin protein levels, and total protein ubiquitination. Furthermore, Mn2+ effectively decreases astrocytic mRNA expression and the phosphorylation of serum and glucocorticoid-inducible kinase, a regulatory protein, which, in the active phosphorylated form, is responsible for the phosphorylation and subsequent inactivation of Nedd4-2. Additional findings establish that Mn2+ increases astrocytic caspase-like proteolytic proteasome activity and that the Mn2+-dependent degradation of SNAT3 protein is blocked by the proteasome inhibitors, N-acetylleu-leu-norleucinal and lactacystin. Combined, these results demonstrate that Mn2+-induced SNAT3 protein degradation and the dysregulation of Gln homeostasis in primary astrocyte cultures proceeds through the ubiquitin-mediated proteolytic system.
KW - Glutamine
KW - Manganese
KW - Nedd4-2/SGK1 signaling
KW - Proteasome
KW - SNAT3
KW - Ubiquitination
UR - http://www.scopus.com/inward/record.url?scp=78649403248&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649403248&partnerID=8YFLogxK
U2 - 10.1002/glia.21060
DO - 10.1002/glia.21060
M3 - Article
C2 - 20737472
AN - SCOPUS:78649403248
SN - 0894-1491
VL - 58
SP - 1905
EP - 1912
JO - GLIA
JF - GLIA
IS - 16
ER -