TY - JOUR
T1 - Legionella pneumophila catalase-peroxidases are required for proper trafficking and growth in primary macrophages
AU - Bandyopadhyay, Purnima
AU - Byrne, Brenda
AU - Chan, Yolande
AU - Swanson, Michele S.
AU - Steinman, Howard M.
PY - 2003/8/1
Y1 - 2003/8/1
N2 - Legionella pneumophila, a parasite of aquatic amoebae and pathogen of pulmonary macrophages, replicates intracellularly, utilizing a type IV secretion system to subvert the trafficking of Legionella-containing phagosomes. Defense against host-derived reactive oxygen species has been proposed as critical for intracellular replication. Virulence traits of null mutants in katA and katB, encoding the two Legionella catalase-peroxidases, were analyzed to evaluate the hypothesis that L. pneumophila must decompose hydrogen peroxide to establish a replication niche in macrophages. Phagosomes containing katA or katB mutant Legionella colocalize with LAMP-1, a late endosomal-lysosomal marker, at twice the frequency of those of wild-type strain JR32 and show a decreased frequency of bacterial replication, in similarity to phenotypes of mutants with mutations in dotA and dotB, encoding components of the Type IV secretion system. Quantitative similarity of the katA/B phenotypes indicates that each contributes to virulence traits largely independently of intracellular compartmentalization (KatA in the periplasm and KatB in the cytosol). These data support a model in which KatA and KatB maintain a critically low level of H2O2 compatible with proper phagosome trafficking mediated by the type IV secretion apparatus. During these studies, we observed that dotA and dotB mutations in wild-type strain Lp02 had no effect on intracellular multiplication in the amoeba Acanthamoeba castellanii, indicating that certain dotA/B functions in Lp02 are dispensable in that experimental model. We also observed that wild-type JR32, unlike Lp02, shows minimal contact-dependent cytotoxicity, suggesting that cytotoxicity of JR32 is not a prerequisite for formation of replication-competent Legionella phagosomes in macrophages.
AB - Legionella pneumophila, a parasite of aquatic amoebae and pathogen of pulmonary macrophages, replicates intracellularly, utilizing a type IV secretion system to subvert the trafficking of Legionella-containing phagosomes. Defense against host-derived reactive oxygen species has been proposed as critical for intracellular replication. Virulence traits of null mutants in katA and katB, encoding the two Legionella catalase-peroxidases, were analyzed to evaluate the hypothesis that L. pneumophila must decompose hydrogen peroxide to establish a replication niche in macrophages. Phagosomes containing katA or katB mutant Legionella colocalize with LAMP-1, a late endosomal-lysosomal marker, at twice the frequency of those of wild-type strain JR32 and show a decreased frequency of bacterial replication, in similarity to phenotypes of mutants with mutations in dotA and dotB, encoding components of the Type IV secretion system. Quantitative similarity of the katA/B phenotypes indicates that each contributes to virulence traits largely independently of intracellular compartmentalization (KatA in the periplasm and KatB in the cytosol). These data support a model in which KatA and KatB maintain a critically low level of H2O2 compatible with proper phagosome trafficking mediated by the type IV secretion apparatus. During these studies, we observed that dotA and dotB mutations in wild-type strain Lp02 had no effect on intracellular multiplication in the amoeba Acanthamoeba castellanii, indicating that certain dotA/B functions in Lp02 are dispensable in that experimental model. We also observed that wild-type JR32, unlike Lp02, shows minimal contact-dependent cytotoxicity, suggesting that cytotoxicity of JR32 is not a prerequisite for formation of replication-competent Legionella phagosomes in macrophages.
UR - http://www.scopus.com/inward/record.url?scp=0041764462&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0041764462&partnerID=8YFLogxK
U2 - 10.1128/IAI.71.8.4526-4535.2003
DO - 10.1128/IAI.71.8.4526-4535.2003
M3 - Article
C2 - 12874332
AN - SCOPUS:0041764462
SN - 0019-9567
VL - 71
SP - 4526
EP - 4535
JO - Infection and Immunity
JF - Infection and Immunity
IS - 8
ER -