TY - JOUR
T1 - Interaction between the immunoglobulin heavy chain 3' regulatory region and the IgH transcription unit during B cell differentiation
AU - Ju, Zhongliang
AU - Chatterjee, Sanjukta
AU - Birshtein, Barbara K.
N1 - Funding Information:
Supported by NIH RO1AI13509. We thank Drs. Sabrina Volpi, Sergio Roa and Alexander V. Emelyanov of Albert Einstein College of Medicine for helpful discussions of this manuscript.
PY - 2011/10
Y1 - 2011/10
N2 - The immunoglobulin heavy (Igh) chain locus is subject to precisely regulated processes, such as variable region gene formation through recombination of variable (V H), diversity (D H), and joining (J H) segments, class switching and somatic hypermutation. The 3' regulatory region (3' RR) is a key regulator of the Igh locus, and, as revealed by deletions in mouse plasma cell lines and mice, is required for IgH expression as well as class switching. One of the mechanisms by which the 3' RR regulates its targets is through long-range physical interactions. Such interactions between elements of the 3' RR and a target site in the IgH transcription unit have been detected in plasma cells, and in resting and switching B cells, where they have been associated with IgH expression and class switching, respectively. Here, we report that lentiviral shRNA knockdown of transcription factors, CTCF, Oct-2, or OBF-1/OCA-B, had no discernible defects in loop formation or H chain expression in plasma cells. J H-3' RR interactions in pre-B cell lines were specifically associated with IgH expression. J H-3' RR interactions were not detected in either Pax5-deficient or RAG-deficient pro-B cells, but were apparent in an Abelson-derived pro-B cell line. These observations imply that the 3' RR has different loop interactions with target Igh sequences at different stages of B cell development and Igh regulation.
AB - The immunoglobulin heavy (Igh) chain locus is subject to precisely regulated processes, such as variable region gene formation through recombination of variable (V H), diversity (D H), and joining (J H) segments, class switching and somatic hypermutation. The 3' regulatory region (3' RR) is a key regulator of the Igh locus, and, as revealed by deletions in mouse plasma cell lines and mice, is required for IgH expression as well as class switching. One of the mechanisms by which the 3' RR regulates its targets is through long-range physical interactions. Such interactions between elements of the 3' RR and a target site in the IgH transcription unit have been detected in plasma cells, and in resting and switching B cells, where they have been associated with IgH expression and class switching, respectively. Here, we report that lentiviral shRNA knockdown of transcription factors, CTCF, Oct-2, or OBF-1/OCA-B, had no discernible defects in loop formation or H chain expression in plasma cells. J H-3' RR interactions in pre-B cell lines were specifically associated with IgH expression. J H-3' RR interactions were not detected in either Pax5-deficient or RAG-deficient pro-B cells, but were apparent in an Abelson-derived pro-B cell line. These observations imply that the 3' RR has different loop interactions with target Igh sequences at different stages of B cell development and Igh regulation.
KW - B cell development
KW - Chromosome conformation capture (3C)
KW - Immunoglobulin gene rearrangements
KW - Immunoglobulin heavy chain gene expression
KW - Lentivirus-mediated shRNA
KW - Long-range enhancer interactions
UR - http://www.scopus.com/inward/record.url?scp=82455220324&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82455220324&partnerID=8YFLogxK
U2 - 10.1016/j.molimm.2011.08.024
DO - 10.1016/j.molimm.2011.08.024
M3 - Article
C2 - 21945019
AN - SCOPUS:82455220324
SN - 0161-5890
VL - 49
SP - 297
EP - 303
JO - Molecular Immunology
JF - Molecular Immunology
IS - 1-2
ER -