TY - JOUR
T1 - Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Both Generate Superoxide/H2O2 in a Side Reaction and Each Could Contribute to Oxidative Stress in Mitochondria
AU - Jordan, Frank
AU - Nemeria, Natalia
AU - Gerfen, Gary
N1 - Funding Information:
This work was supported, in whole or in part, by National Institutes of Health [Grant # 9R15GM116077-01 (to F.J.)]; the National Science Foundation [Grant CHE-1402675 (to F.J.) and Grant CHE 1213550 (to G.J.G)]; the Rutgers-Newark Chancellor’s SEED Grant (to F.J).
Publisher Copyright:
© 2019, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - According to recent findings, the human 2-oxoglutarate dehydrogenase complex (hOGDHc) could be an important source of the reactive oxygen species in the mitochondria and could contribute to mitochondrial abnormalities associated with multiple neurodegenerative diseases, including Alzheimer’s disease, Huntington disease, and Parkinson’s disease. The human 2-oxoadipate dehydrogenase (hE1a) is a novel protein, which is encoded by the DHTKD1 gene. Both missence and nonsense mutations were identified in the DHTKD1 that lead to alpha-aminoadipic and alpha-oxoadipic aciduria, a metabolic disorder with a wide variety of the neurological abnormalities, and Charcot-Marie-Tooth disease type 2Q, an inherited neurological disorder affecting the peripheral nervous system. Recently, the rare pathogenic mutations in DHTKD1 and an increased H2O2 production were linked to the genetic ethiology of Eosinophilic Esophagitis (EoE), a chronic allergic inflammatory esophageal disorder. In view of the importance of hOGDHc in the tricarboxylic acid cycle (TCA cycle) and hE1a on the l-lysine, l-hydroxylysine and l-tryptophan degradation pathway in mitochondria, and to enhance our current understanding of the mechanism of superoxide/H2O2 generation by hOGDHc, and by human 2-oxoadipate dehydrogenase complex (hOADHc), this review focuses on several novel and unanticipated recent findings in vitro that emerged from the Jordan group’s research. Most significantly, the hE1o and hE1a now join the hE3 as being able to generate the superoxide/H2O2 in mitochondria.
AB - According to recent findings, the human 2-oxoglutarate dehydrogenase complex (hOGDHc) could be an important source of the reactive oxygen species in the mitochondria and could contribute to mitochondrial abnormalities associated with multiple neurodegenerative diseases, including Alzheimer’s disease, Huntington disease, and Parkinson’s disease. The human 2-oxoadipate dehydrogenase (hE1a) is a novel protein, which is encoded by the DHTKD1 gene. Both missence and nonsense mutations were identified in the DHTKD1 that lead to alpha-aminoadipic and alpha-oxoadipic aciduria, a metabolic disorder with a wide variety of the neurological abnormalities, and Charcot-Marie-Tooth disease type 2Q, an inherited neurological disorder affecting the peripheral nervous system. Recently, the rare pathogenic mutations in DHTKD1 and an increased H2O2 production were linked to the genetic ethiology of Eosinophilic Esophagitis (EoE), a chronic allergic inflammatory esophageal disorder. In view of the importance of hOGDHc in the tricarboxylic acid cycle (TCA cycle) and hE1a on the l-lysine, l-hydroxylysine and l-tryptophan degradation pathway in mitochondria, and to enhance our current understanding of the mechanism of superoxide/H2O2 generation by hOGDHc, and by human 2-oxoadipate dehydrogenase complex (hOADHc), this review focuses on several novel and unanticipated recent findings in vitro that emerged from the Jordan group’s research. Most significantly, the hE1o and hE1a now join the hE3 as being able to generate the superoxide/H2O2 in mitochondria.
KW - 2-Oxoglutarate and 2-oxoadipate dehydrogenase complexes
KW - Hydrogen peroxide
KW - Oxidative stress
KW - Thiamin diphosphate-enamine radical
UR - http://www.scopus.com/inward/record.url?scp=85062735489&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062735489&partnerID=8YFLogxK
U2 - 10.1007/s11064-019-02765-w
DO - 10.1007/s11064-019-02765-w
M3 - Article
C2 - 30847859
AN - SCOPUS:85062735489
SN - 0364-3190
VL - 44
SP - 2325
EP - 2335
JO - Neurochemical Research
JF - Neurochemical Research
IS - 10
ER -