HIV malaria co-infection is associated with atypical memory B cell expansion and a reduced antibody response to a broad array of Plasmodium falciparum antigens in Rwandan adults

Krishanthi S. Subramaniam, Jeff Skinner, Emil Ivan, Eugene Mutimura, Ryung S. Kim, Catherine M. Feintuch, Silvia Portugal, Kathryn Anastos, Peter D. Crompton, Johanna P. Daily

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

HIV infected individuals in malaria endemic areas experience more frequent and severe malaria episodes compared to non HIV infected. This clinical observation has been linked to a deficiency in antibody responses to Plasmodium falciparum antigens; however, prior studies have only focused on the antibody response to <0.5% of P. falciparum proteins. To obtain a broader and less-biased view of the effect of HIV on antibody responses to malaria we compared antibody profiles of HIV positive (HIV+) and negative (HIV-) Rwandan adults with symptomatic malaria using a microarray containing 824 P. falciparum proteins. We also investigated the cellular basis of the antibody response in the two groups by analyzing B and T cell subsets by flow cytometry. Although HIV malaria co-infected individuals generated antibodies to a large number of P. falciparum antigens, including potential vaccine candidates, the breadth and magnitude of their response was reduced compared to HIVindividuals. HIV malaria co-infection was also associated with a higher percentage of atypical memory B cells (MBC) (CD19+CD10-CD21-CD27-) compared to malaria infection alone. Among HIV+ individuals the CD4+ T cell count and HIV viral load only partially explained variability in the breadth of P. falciparum-specific antibody responses. Taken together, these data indicate that HIV malaria co-infection is associated with an expansion of atypical MBCs and a diminished antibody response to a diverse array of P. falciparum antigens, thus offering mechanistic insight into the higher risk of malaria in HIV+ individuals.

Original languageEnglish (US)
Article numbere0124412
JournalPloS one
Volume10
Issue number4
DOIs
StatePublished - Apr 1 2015

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'HIV malaria co-infection is associated with atypical memory B cell expansion and a reduced antibody response to a broad array of Plasmodium falciparum antigens in Rwandan adults'. Together they form a unique fingerprint.

Cite this