Abstract
Lead (Pb) is a ubiquitous environmental and industrial pollutant. It induces neurotoxicity and cell death by disrupting the pro- and anti-oxidative balance; however, the mechanisms of its toxicity have yet to be fully understood. The soy-derived isoflavonoid, genistein (GEN), was reported to possess neuroprotective and antioxidative properties. The present study investigated the molecular mechanisms of Pb-induced neurotoxicity in vivo and in vitro, addressing the efficacy of GEN in protecting against Pb-induced toxicity. Pb exposure was associated with reduction of cell viability and cell apoptosis, concomitant with reactive oxygen species (ROS) generation in vitro, and pre-treatment with GEN markedly ameliorated the Pb-induced oxidative injury by increasing the expression of key antioxidant enzymes and the antioxidant transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2). Next, PKC-α activation was found after Pb exposure in vitro and pretreatment with GEN attenuated Pb-induced ROS generation by PKC-α inhibition. MAPK-NF-κB activation triggered by Pb was also inhibited by GEN. In summary, our study establishes that GEN alleviates Pb-induced impairment in spatial memory, and reduces cell apoptosis caused by Pb exposure and GEN protects neurons from Pb-induced neurotoxicity by downstream activation of antioxidant and anti-apoptotic pathways via regulation of Nrf2 and MAPK-NF-κB signaling.
Original language | English (US) |
---|---|
Pages (from-to) | 153-164 |
Number of pages | 12 |
Journal | Neurotoxicology |
Volume | 53 |
DOIs | |
State | Published - Mar 1 2016 |
Externally published | Yes |
Keywords
- Apoptosis
- Genistein
- Lead
- MAPKs
- NF-κB
- Nrf2
- Oxidative stress
ASJC Scopus subject areas
- Neuroscience(all)
- Toxicology