Gating of gap junction channels

D. C. Spray, R. L. White, A. C. de Carvalho, A. L. Harris, M. V. Bennett

Research output: Contribution to journalArticlepeer-review

81 Scopus citations

Abstract

Gap junctional conductance ( gj ) in various species is gated by voltage and intracellular pH (pHi). In amphibian embryos, gj is reduced to half by a 14 mV transjunctional voltage ( Vj ), a change that in fish embryo requires approximately 28 mV. Crayfish septate axon and pairs of dissociated rat myocytes show no voltage dependence of gj over a range of Vj greater than +/- 50 mV. In fish and amphibian blastomeres , gj is steeply decreased by decrease in pHi (n, Hill coefficient: 4.5) and the apparent pKH (7.3) is in the physiological range. In crayfish septate axon the pKH is lower (6.7) and the curve is less steep (n = 2.7). Rises in cytoplasmic Ca can also decrease gj but much higher concentrations are required (greater than 0.1 mM in fish blastomeres). Voltage and pH gates on gap junctions in amphibian embryos appear independent. In squid blastomeres pH gates exhibit some sensitivity to potential, both transjunctional and between inside and outside. A pharmacology of gap junctions is being developed: certain agents block gj directly (aldehydes, alcohols, NEM in crayfish); others block by decreasing pHi (esters that are hydrolyzed by intrinsic esterases, NEM in vertebrates, and, as in the experiments demonstrating the effect of pHi, weak acids). Certain agents block pH sensitivity without affecting voltage dependence (retinoic acid, glutaraldehyde, EEDQ), further indicating separateness of pH and voltage gates. These studies demonstrate a dynamics of gap junctional conductance and variability in gating in a series of possibly homologous membrane channels.

Original languageEnglish (US)
Pages (from-to)219-230
Number of pages12
JournalBiophysical journal
Volume45
Issue number1
DOIs
StatePublished - 1984
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics

Fingerprint

Dive into the research topics of 'Gating of gap junction channels'. Together they form a unique fingerprint.

Cite this