TY - JOUR
T1 - Further studies on the charge-related alterations of methotrexate transport in Ehrlich ascites tumor cells by ionic liposomes
T2 - Correlation with liposome-cell association
AU - Fry, D. W.
AU - Goldman, I. D.
PY - 1982/12
Y1 - 1982/12
N2 - Interaction of positively (phosphatidylcholine/stearylamine 5:1) or negatively (phosphatidylcholine/stearic acid 5:1) charged liposomes with Ehrlich ascites tumor cells for 1-5 min increases or decreases, respectively, the bidirectional fluxes of the folic acid analog, methotrexate. These effects on influx and efflux appear to be symmetrical since the liposomes do not change the intracellular level of methotrexate at the steady state. Influx kinetics show that these alterations result from an increase or decrease in the Vmax with no change in the Kmin. These effects appear to be specific for the methotrexate-tetrahydrofolate carrier system since the transport of other compounds which utilize this carrier, aminopterin, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate, is affected similarly to methotrexate, whereas, the transport of folic acid, a compound similar in structure and charge but not significantly transported by this carrier is unaffected by liposomes. Once cells are exposed to charged liposomes, the effects on methotrexate transport cannot be reversed by washing the cells free of the extracellular liposomes. If, however, cells are exposed to liposomes of one charge, washed and then exposed to liposomes of the opposite charge, methotrexate influx is reversed to control rates. The effects of charged liposomes on methotrexate influx were not abolished by treating the cells with neuraminidase, metabolic inhibitors or lowering the temperature to 4°C. Studies on the uptake of [14C] liposomes show that these effects are not proportional to the total amount of lipid associated with the cell but result from an initial rapid liposome-cell association that is not dependent on temperature or energy metabolism nor related to cell surface charge.
AB - Interaction of positively (phosphatidylcholine/stearylamine 5:1) or negatively (phosphatidylcholine/stearic acid 5:1) charged liposomes with Ehrlich ascites tumor cells for 1-5 min increases or decreases, respectively, the bidirectional fluxes of the folic acid analog, methotrexate. These effects on influx and efflux appear to be symmetrical since the liposomes do not change the intracellular level of methotrexate at the steady state. Influx kinetics show that these alterations result from an increase or decrease in the Vmax with no change in the Kmin. These effects appear to be specific for the methotrexate-tetrahydrofolate carrier system since the transport of other compounds which utilize this carrier, aminopterin, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate, is affected similarly to methotrexate, whereas, the transport of folic acid, a compound similar in structure and charge but not significantly transported by this carrier is unaffected by liposomes. Once cells are exposed to charged liposomes, the effects on methotrexate transport cannot be reversed by washing the cells free of the extracellular liposomes. If, however, cells are exposed to liposomes of one charge, washed and then exposed to liposomes of the opposite charge, methotrexate influx is reversed to control rates. The effects of charged liposomes on methotrexate influx were not abolished by treating the cells with neuraminidase, metabolic inhibitors or lowering the temperature to 4°C. Studies on the uptake of [14C] liposomes show that these effects are not proportional to the total amount of lipid associated with the cell but result from an initial rapid liposome-cell association that is not dependent on temperature or energy metabolism nor related to cell surface charge.
KW - Ehrlich
KW - cell
KW - liposome
KW - methotrexate
KW - transport
KW - tumor
UR - http://www.scopus.com/inward/record.url?scp=0020471606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020471606&partnerID=8YFLogxK
U2 - 10.1007/BF01868485
DO - 10.1007/BF01868485
M3 - Article
C2 - 7077651
AN - SCOPUS:0020471606
SN - 0022-2631
VL - 66
SP - 87
EP - 95
JO - Journal of Membrane Biology
JF - Journal of Membrane Biology
IS - 1
ER -