Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain

Sayan Nandi, Mohammed P. Akhter, Mark F. Seifert, Xu Ming Dai, E. Richard Stanley

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


The primary macrophage growth factor, colony-stimulating factor-1 (CSF-1), is homodimeric and exists in 3 biologically active isoforms: a membrane-spanning, cell-surface glycoprotein (csCSF-1) and secreted glycoprotein (sgCSF-1) and proteoglycan (spCSF-1) isoforms. To investigate the in vivo role of the chondroitin sulfate glycosaminoglycan (GAG) chain of spCSF-1, we created mice that exclusively express, in a normal tissue-specific and developmental manner, either the secreted precursor of spCSF-1 or the corresponding precursor in which the GAG addition site was mutated. The reproductive, hematopoietic tooth eruption and tissue macrophage defects of CSF-1-deficient, osteopetrotic Csf1op/Csf1op mice were corrected by transgenic expression of the precursors of either sgCSF-1 or spCSF-1. Furthermore, in contrast to the transgene encoding csCSF-1, both failed to completely correct growth retardation, suggesting a role for csCSF-1 in the regulation of body weight. However, spCSF-1, in contrast to sgCSF-1, completely resolved the osteopetrotic phenotype. Furthermore, in transgenic lines expressing different concentrations of sgCSF-1 or spCSF-1, spCSF-1 more efficiently corrected Csf1 op/Csf1op defects of tooth eruption, eyelid opening, macrophage morphology, and B-cell deficiency than sgCSF-1. These results indicate an important role of the CSF-1 chondroitin sulfate proteoglycan in in vivo signaling by secreted CSF-1.

Original languageEnglish (US)
Pages (from-to)786-795
Number of pages10
Issue number2
StatePublished - Jan 15 2006

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology


Dive into the research topics of 'Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain'. Together they form a unique fingerprint.

Cite this