Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables

Xiaoran Li, Peilin Ge, Jocelyn Zhu, Haifang Li, James Graham, Adam Singer, Paul S. Richman, Tim Q. Duong

Research output: Contribution to journalArticlepeer-review

61 Scopus citations


Background: This study aimed to develop a deep-learning model and a risk-score system using clinical variables to predict intensive care unit (ICU) admission and in-hospital mortality in COVID-19 patients. Methods: This retrospective study consisted of 5,766 persons-under-investigation for COVID-19 between 7 February 2020 and 4 May 2020. Demographics, chronic comorbidities, vital signs, symptoms and laboratory tests at admission were collected. A deep neural network model and a risk-score system were constructed to predict ICU admission and in-hospital mortality. Prediction performance used the receiver operating characteristic area under the curve (AUC). Results: The top ICU predictors were procalcitonin, lactate dehydrogenase, C-reactive protein, ferritin and oxygen saturation. The top mortality predictors were age, lactate dehydrogenase, procalcitonin, cardiac troponin, C-reactive protein and oxygen saturation. Age and troponin were unique top predictors for mortality but not ICU admission. The deep-learning model predicted ICU admission and mortality with an AUC of 0.780 (95% CI [0.760-0.785]) and 0.844 (95% CI [0.839-0.848]), respectively. The corresponding risk scores yielded an AUC of 0.728 (95% CI [0.726-0.729]) and 0.848 (95% CI [0.847-0.849]), respectively. Conclusions: Deep learning and the resultant risk score have the potential to provide frontline physicians with quantitative tools to stratify patients more effectively in time-sensitive and resource-constrained circumstances.

Original languageEnglish (US)
Article numbere10337
StatePublished - Nov 6 2020


  • Coronavirus
  • Machine learning
  • Pneumonia
  • Prediction model
  • SARS-CoV-2

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)


Dive into the research topics of 'Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables'. Together they form a unique fingerprint.

Cite this