Cyclin-dependent kinase 4/6 inhibitors require an arcuate-to-paraventricular hypothalamus melanocortin circuit to treat diet-induced obesity

Niloy Jafar Iqbal, Gary J. Schwartz, Hongling Zhao, Liang Zhu, Streamson Chua

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The arcuate nucleus (ARC) of the hypothalamus comprises two antagonistic neuron populations critical for energy balance, namely, the anorexigenic pro-opiomelanocortin (POMC) and the orexigenic agouti-related peptide (AgRP) neurons that act as agonists and antagonists, respectively, for neurons expressing the type IV melanocortin receptor (MC4R) (Andermann ML and Lowell BB. Neuron 95: 757-778, 2017). MC4R activation increases energy expenditure and decreases food intake during positive energy balance states to prevent diet-induced obesity (DIO). Work from our group identified aberrant neuronal cell cycle events both as a novel biomarker and druggable target in the ARC for the treatment of DIO, demonstrating pharmacological restoration of retinoblastoma protein function in the ARC using cyclin-dependent kinase 4/6 (CDK4/6) inhibitors could treat DIO in mice by increasing lipid oxidation to selectively decrease fat mass. However, the role of CDK4/6 inhibitors on food intake was not examined. Four-week-old Mc4r-loxTB mice were continuously administered high-fat diet (60% kcal fat). At 8wk of age, animals were administered 60 mg/kg abemaciclib orally or a saline control and monitored every 2 wk for fat mass changes by MRI. At 11 wk of age, all animals were injected bilaterally in the paraventricular hypothalamus with AAV8 serotype virus expressing a CremCherry and monitored for another 5 wk. Restoration of Mc4r expression in the paraventricular hypothalamic nucleus (PVN/ PVH) reduced food intake in hyperphagic obese mice when given CDK4/6 inhibitor therapy. The reduced food intake was responsible for reduced fat mass in mice treated with abemaciclib. These results indicate that targeting POMC neurons could be an effective strategy in treating diet-related obesity.

Original languageEnglish (US)
Pages (from-to)467-474
Number of pages8
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume320
Issue number3
DOIs
StatePublished - 2021

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Cyclin-dependent kinase 4/6 inhibitors require an arcuate-to-paraventricular hypothalamus melanocortin circuit to treat diet-induced obesity'. Together they form a unique fingerprint.

Cite this