TY - JOUR
T1 - Conditionally replicating mycobacteriophages
T2 - A system for transposon delivery to Mycobacterium tuberculosis
AU - Bardarov, Stoyan
AU - Kriakov, Jordan
AU - Carriere, Christian
AU - Yu, Shengwei
AU - Vaamonde, Carlos
AU - Mcadam, Ruth A.
AU - Bloom, Barry R.
AU - Hatfull, Graham F.
AU - Jacobs, William R.
PY - 1997/9/30
Y1 - 1997/9/30
N2 - Transposon mutagenesis provides a direct selection for mutants and is an extremely powerful technique to analyze genetic functions in a variety of prokaryotes. Transposon mutagenesis of Mycobacterium tuberculosis has been limited in part because of the inefficiency of the delivery systems. This report describes the development of conditionally replicating shuttle phasmids from the mycobacteriophages D29 and TM4 that enable efficient delivery of transposons into both fast- and slow-growing mycobacteria. These shuttle phasmids consist of an Escherichia coli cosmid vector containing either a mini-Tn10(kan) or Tn5367 inserted into a nonessential region of the phage genome. Thermosensitive mutations were created in the mycobacteriophage genome that allow replication at 30°C but not at 37°C (TM4) or 38.5°C (D29). Infection of mycobacteria at the nonpermissive temperature results in highly efficient transposon delivery to the entire population of mycobacterial cells. Transposition of mini-Tn10(kan) occurred in a site- specific fashion in M. smegmatis whereas Tn5367 transposed apparently randomly in M. phlei, Bacille Calmette-Guerin (BCG), and M. tuberculosis. Sequence analysis of the M. tuberculosis and BCG chromosomal regions adjacent to Tn5367 insertions, in combination with M. tuberculosis genomic sequence and physical map data, indicates that the transpositions have occurred randomly in diverse genes in every quadrant of the genome. Using this system, it has been readily possible to generate libraries containing thousands of independent mutants of M. phlei, BCG, and M. tuberculosis.
AB - Transposon mutagenesis provides a direct selection for mutants and is an extremely powerful technique to analyze genetic functions in a variety of prokaryotes. Transposon mutagenesis of Mycobacterium tuberculosis has been limited in part because of the inefficiency of the delivery systems. This report describes the development of conditionally replicating shuttle phasmids from the mycobacteriophages D29 and TM4 that enable efficient delivery of transposons into both fast- and slow-growing mycobacteria. These shuttle phasmids consist of an Escherichia coli cosmid vector containing either a mini-Tn10(kan) or Tn5367 inserted into a nonessential region of the phage genome. Thermosensitive mutations were created in the mycobacteriophage genome that allow replication at 30°C but not at 37°C (TM4) or 38.5°C (D29). Infection of mycobacteria at the nonpermissive temperature results in highly efficient transposon delivery to the entire population of mycobacterial cells. Transposition of mini-Tn10(kan) occurred in a site- specific fashion in M. smegmatis whereas Tn5367 transposed apparently randomly in M. phlei, Bacille Calmette-Guerin (BCG), and M. tuberculosis. Sequence analysis of the M. tuberculosis and BCG chromosomal regions adjacent to Tn5367 insertions, in combination with M. tuberculosis genomic sequence and physical map data, indicates that the transpositions have occurred randomly in diverse genes in every quadrant of the genome. Using this system, it has been readily possible to generate libraries containing thousands of independent mutants of M. phlei, BCG, and M. tuberculosis.
UR - http://www.scopus.com/inward/record.url?scp=0030931885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030931885&partnerID=8YFLogxK
U2 - 10.1073/pnas.94.20.10961
DO - 10.1073/pnas.94.20.10961
M3 - Article
C2 - 9380742
AN - SCOPUS:0030931885
SN - 0027-8424
VL - 94
SP - 10961
EP - 10966
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 20
ER -